1

6

7

ATLAS C++ coding guidelines’

Version 2.1

Scott Snyder (BNL) Shaun Roe (CERN)
and the former ATLAS Quality Control group

January 1, 2026

Table of Contents

1 Introduction 3
2 Naming 3
21 Namingoffiles. . . . .. ... ... . o 3

2.2 Meaningfulnames . . . . ... ... Lo oL 4

2.3 Required naming conventions: . . . . ... ... ... ... ... 4

2.4 Recommended naming conventions . . . ... ... ... .... 5

3 Coding 8
3.1 Organizingthecode . . . . . ... ... ... .. ... .. ... 8

32 Controlflow . . . ... ... 12

3.3 Objectlifecycle . . ... ... ... ... . 14
3.3.1 Initialization of variables and constants . . . . . .. .. 14

3.3.2  Constructor initializer lists . . . . . . ... ... ... .. 20

3.3.3 Copyingofobjects . ... ... ... .. ......... 22

*Correspondence to snyderebnl. gov.
Generated from https://gitlab.cern.ch/ssnyder/coding-rules/-/blob/master/rules.md by pandoc
version 3.1.11.1 on January 9, 2026
The current version of this document is avalailable at https://atlassoftwaredocs.web.cern.ch/
coding-guidelines.


https://atlassoftwaredocs.web.cern.ch/coding-guidelines
https://atlassoftwaredocs.web.cern.ch/coding-guidelines

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

I3

0

1 INTRODUCTION

3.4 Conversions . . . . . ... i i e e 27
3.5 Theclassinterface . . . . . ... ... ... L. 30
3.5.1 Inline functions . . . . . ... ... ... ... ... .. 30

3.5.2 Argument passing and return values . . . . .. ... .. 30

353 constcorrectness . .. ... ... ... ... ... 35

3.5.4 Overloading and default arguments . . . . . .. ... .. 36

355 Comparisons . . . .. ... ... ... 37

3.6 newanddelete . ... ... .. ... ... ... ... 38
3.7 Static and global objects . . . . . . ... ... oL 40
3.8 Object-oriented programming . . . .. ... ... ........ 41
3.9 Notes on the use of library functions. . . . .. ... ... .... 44
3.10 Thread friendliness and thread safety . . . ... ... ... ... 46
3.11 Formattedoutput . . . ... ... ... ... ... ..., 52
3.12 Assertions and error conditions . . . . ... ... ... L. 53
3.13 Errorhandling . . . .. ... ... ... . o 53
3.14 Partsof C++toavoid . . ... ... ... ... ... ... ... 58
3.15 Readability and maintainability . . ... .. ... ... ... .. 64
3.16 Portability . . . . ... ... 66
4 Style 70
4.1 Generalaspectsofstyle . . ... ... ... ... 0L 70
42 Comments . .. ............... ... .. 73
5 Changes 76
51 Version 2.1 (Jan 1,2026) . . . . . . . . . . . i 76
5.2 Version 2.0 (March 6,2024) . . . ... ... ... ......... 76
5.3 Version 0.7 (Sep 18,2019) . . . . . . . . . .. . 77
5.4 Version 0.6 (Dec 20,2017) . . . . . . . . . . .. .. ... 77
5.5 Version 0.5 (Nov 21,2017) . . . . . . . . . . . i 77
5.6 Version 0.4 (Nov 16,2017) . . . . . . . . . . . . v 77
5.7 Version 0.3 (Aug 23,2017) . . . o o i 77
5.8 Version 0.2 (Aug 9,2017) . . . . . . . . 78
References 78

2 Version 2.1



58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

2 NAMING

1 Introduction

This note gives a set of guidelines and recommendations for coding in C++ for
the ATLAS experiment.

There are several reasons for maintaining and following a set of programming
guidelines. First, by following some rules, one can avoid some common errors
and pitfalls in C++ programming, and thus have more reliable code. But even
more important: a computer program should not only tell the machine what to
do, but it should also tell other people what you want the machine to do. (For
much more elaboration on this idea, look up references on “literate programming,’
such as [1].) This is obviously important any time when you have many people
working on a given piece of software, and such considerations would naturally
lead to code that is easy to read and understand. Think of writing ATLAS code as
another form of publication, and take the same care as you would writing up an
analysis for colleagues.

This document is derived from the original ATLAS C++ coding standard, ATL-
SOFT-2002-001 [2], which was last revised in 2003. This itself derived from work
done by the CERN “Project support team” and SPIDER project, as documented
in CERN-UCO/1999/207 [3]. These previous guidelines have been significantly
revised to take into account the evolution of the C++ language [4], current
practices in ATLAS, and the experience gained over the past decade.

Some additional useful information on C++ programming may be found in the
references [5-13].

This note is not intended to be a fixed set of rigid rules. Rather, it should evolve
as experience warrants.

2 Naming
This section contains guidelines on how to name objects in a program.

2.1 Naming of files

- Each class should have one header file, ending with “.h”, and one
implementation file, ending with “. cxx”. [source-naming]

3 Version 2.1


https://cds.cern.ch/record/685315
https://cds.cern.ch/record/685315
https://cds.cern.ch/record/685315

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

929

100

101

102

103

104

105

2.2 Meaningful names 2 NAMING

2.2

2.3

Some exceptions: Small classes used as helpers for another class should gen-
erally not go in their own file, but should instead be placed with the larger
class. Sometimes several very closely related classes may be grouped to-
gether in a single file; in that case, the files should be named after whichever
is the “primary” class. A number of related small helper classes (not associ-
ated with a particular larger class) may be grouped together in a single file,
which should be given a descriptive name. An example of the latter could
be a set of classes used as exceptions for a package.

For classes in a namespace, the namespace should not be included in the file
name. For example, the header for Trk: : Track should be called Track. h.

Implementation (“. cxx”) files that would be empty may be omitted.

The use of the “.h” suffix for headers is long-standing ATLAS practice;
however, it is unfortunate since language-sensitive editors may then default
to using “C” rather than “C++” mode for these files. For Emacs, it can help
to put a line like this at the start of the file:

Meaningful names

Choose names based on pronounceable English words, common
abbreviations, or acronyms widely used in the experiment, except
for loop iteration variables. [use-meaningful-names]

For example, nameLength is better than nLn.

Use names that are English and self-descriptive. Abbreviations and/or
acronyms used should be of common use within the community.

Do not create very similar names. [no-similar-names]

In particular, avoid names that differ only in case. For example, track /
Track; c1/ cl; X0/ XO0.

Required naming conventions:

s Generally speaking, you should try to match the conventions used by whatever

107

package you're working on. But please try to always follow these rules:

4 Version 2.1



2.4 Recommended naming conventions 2 NAMING

108 « Use only ASCII characters in identifier names [ascii-identifiers]
109 This is what C++ calls the basic character set. Specifically, identifiers should
110 use only the characters a-z, A-Z, 0-9, and underscore.

m Handling of non-ASCII characters is implementation-defined. While many

2 compilers can indeed handle extended (unicode) characters, not all tools
13 may process them correctly. Some characters may not display correctly,
14 depending on a user’s local installation. Further, it is often not obvious how
115 to type an arbitrary unicode character that one sees displayed, especially
16 since there exist distinct characters that look very similar or identical.

1 + Use prefix m_ for private/protected data members of classes. [data-
18 member-naming]

19 Use a lowercase letter after the prefix m_.

120 An exception for this is xAOD data classes, where the member names are
21 exposed via ROOT for analysis.

122 « Do not start any other names with m_. [m-prefix-reserved]

123 « Do not start names with an underscore. Do not use names that
124 contain anywhere a double underscore. [system-reserved-names]

125 Such names are reserved for the use of the compiler and system libraries.

126 The precise rule is that names that contain a double underscore or which
127 start with an underscore followed by an uppercase letter are reserved
128 anywhere, and all other names starting with an underscore are reserved in
129 the global namespace. However, it’s good practice to just avoid all names
130 starting with an underscore. An exception is the use of a single underscore
131 to indicate something that’s structurally required but ignored.

= 2.4 Recommended naming conventions

113 If there is no already-established naming convention for the package you’re work-
1w ing on, the following guidelines are recommended as being generally consistent
s with ATLAS usage.

136 « Use prefix s_ for private/protected static data members of classes.
137 [static-members]

5 Version 2.1



138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

160

161

2.4 Recommended naming conventions 2 NAMING

Use a lowercase letter after the prefix s_.

The choice of namespace names should be agreed to by the commu-
nities concerned. [namespace-naming]

Don’t proliferate namespaces. If the community developing the code has a
namespace defined already, use it rather than defining a new one. Examples
include Trk: : for tracking and InDet: : for inner detector.

Use namespaces to avoid name conflicts between classes. [use-
namespaces]

A name clash occurs when a name is defined in more than one place. For
example, two different class libraries could give two different classes the
same name. If you try to use many class libraries at the same time, there
is a fair chance that you will be unable to compile and link the program
because of name clashes. To solve the problem you can use a namespace.

New code should preferably be put in a namespace, unless typical ATLAS
usage is otherwise. For example, ATLAS classes related to the calorimeter
conventionally start with “Calo” rather than being in a C++ namespace.

Start class and enumeration types with an uppercase letter. [class-
naming]

class Track;
enum State { green, yellow, red };

Type alias (typedef) names should start with an uppercase letter
if they are public and treated as classes. [typedef-naming]

using TrackVector =
std: :vector<MCParticleKinematics+*>;

Alternatively, a type alias (typedef) name may start with a lower-
case letter and end with _t. [typedef-naming-2]

This form should be reserved for type names which are not treated as classes
(e.g., a name for a fundamental type) or names which are private to a class.

using mycounter_t = unsigned int;

6 Version 2.1



2.4 Recommended naming conventions 2 NAMING

162 - Start names of variables, members, and functions with a lowercase
163 letter. [variable-and-function-naming]

1 |double energy;
: |void extrapolate();

164 Names starting with s_ and m_ should have a lowercase letter following
165 the underscore.

166 Exceptions may be made for the case where the name is following standard
167 physics or mathematical notation that would require an uppercase letter;
168 for example, uppercase E for energy.

169 o In names that consist of more than one word, write the words to-
170 gether, and start each word that follows the first one with an upper-
1 case letter. [compound-names]

1 |class OuterTrackerDigit;
: |double depositedEnergy;
3 |void findTrack();

172 Some ATLAS packages also use the convention that names are entirely low-
173 ercase and separated by underscores. When modifying an existing package,
174 you should try to be consistent with the existing naming convention.

175 « All package names in the release must be unique, independent of
176 the package’s location in the hierarchy. [unique-package-names]

177 If there is a package, say “A/B/C”, already existing, another package may
178 not have the name “D/E/C” because that “C” has already been used. This is
179 required for proper functioning of the build system.

180 « Underscores should be avoided in package names. [no-underscores-
181 in-package-names]

182 The old ATLAS rule was that a _ should be used in package names when they
183 are composites of one or more acronyms, e.g. TRT_Tracker, AtlasDB_*.
184 Underscores should be avoided unless they really help with readability and
185 help in avoiding spelling mistakes. TRTTracker looks odd because of the
186 double “T”. Using underscores in package names will also add to confusion
187 in the multiple-inclusion protection lines.

7 Version 2.1



188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

3 CODING

« Acronyms should be written as all uppercase. [uppercase-acronyms]|

METReconstruction, not MetReconstruction
MuonCSCValidation, not MuonCscValidation

Unfortunately, existing code widely uses both forms.

3 Coding

This section contains a set of items regarding the “content” of the code. Orga-
nization of the code, control flow, object life cycle, conversions, object-oriented
programming, error handling, parts of C++ to avoid, portability, are all examples
of issues that are covered here.

The purpose of the following items is to highlight some useful ways to exploit the
features of the programming language, and to identify some common or potential
errors to avoid.

3.1 Organizing the code

« Header files must begin and end with multiple-inclusion protection.

[header-guards]

#ifndef PACKAGE_CLASS_H
#tdefine PACKAGE_CLASS_H

#endif

Header files are often included many times in a program. Because C++
does not allow multiple definitions of a class, it is necessary to prevent the
compiler from reading the definitions more than once.

The include guard should include both the package name and class name,
to ensure that is unique.

Don’t start the include guard name with an underscore; such names are
reserved to the compiler.

Be careful to use the same string in the i fndef and the define. It’s useful
to get in the habit of using copy/paste here rather than retyping the string.

8 Version 2.1



210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Organizing the code 3 CODING

Some compilers support an extension #pragma once that has similar
functionality. A long time ago, this was sometimes faster, as it allowed
the compiler to skip reading headers that have already been read. How-
ever, modern compilers will automatically do this optimization based on
recognizing header guards. As #pragma once is nonstandard and has no
compelling advantage, it is best avoided.

In some rare cases, a file may be intended to be included multiple times, and
thus not have an include guard. Such files should be explicitly commented
as such, and should usually have an extension other than “.h”; “. def” is
sometimes used for this purpose.

Use forward declaration instead of including a header file, if this is
sufficient. [forward-declarations]

class Line;
class Point

{
public:

Number distance(const Line& line) const;

¥

Here it is sufficient to say that Line is a class, without giving details which
are inside its header. This saves time in compilation and avoids an apparent
dependency upon the Line header file.

Be careful, however: this does not work if Line is actually an alias (as is
the case, for example, with many of the xAOD classes).

Each header file must contain the declaration for one class only,
except for embedded or very tightly coupled classes or collections
of small helper classes. [one-class-per-source]

This makes your source code files easier to read. This also improves the
version control of the files; for example the file containing a stable class
declaration can be committed and not changed any more.

Some exceptions: Small classes used as helpers for another class should gen-
erally not go in their own file, but should instead be placed with the larger
class. Sometimes several very closely related classes may be grouped to-

9 Version 2.1



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

3.1

Organizing the code 3 CODING

gether in a single file; in that case, the files should be named after whichever
is the “primary” class. A number of related small helper classes (not associ-
ated with a particular larger class) may be grouped together in a single file,
which should be given a descriptive name. An example of the latter could
be a set of classes used as exceptions for a package.

Implementation files must hold the member function defini-
tions for the class(es) declared in the corresponding header file.
[implementation-file]

This is for the same reason as for the previous item.
Ordering of #include statements. [include-ordering]

#include directives should generally be listed according to dependency
ordering, with the files that have the most dependencies coming first. This
implies that the first #include ina “. cxx” file should be the corresponding
“.h” file, followed by other #include directives from the same package.
These would then be followed by #include directives for other packages,
again ordered from most to least dependent. Finally, system #include
directives should come last.

// Example for CaloCell.cxx

// First the corresponding header.
#include "CaloEvent/CaloCell.h"

// The headers from other ATLAS packages,
// from most to least dependent.
#include "CaloDetDescr/CaloDetDescrElement.h"
#include "SGTools/BaseInfo.h"

// Headers from external packages.
#include "CLHEP/Geometry/Vector3D.h"
#include "CLHEP/Geometry/Point3D.h"
// System headers.

#include <cmath>

Ordering the #include directives in this way gives the best chance of
catching problems where headers fail to include other headers that they
depend on.

Some old guides recommended testing on the C++ header guard around the
#include directive. This advice is now obsolete and should be avoided.

10 Version 2.1



258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

3.1

Organizing the code 3 CODING

// Obsolete --- don't do this anymore.
#ifndef MYPACKAGE_MYHEADER_H

# include "MyPackage/MyHeader.h"
#endif

The rationale for this was to avoid having the preprocessor do redundant
reads of the header file. However, current C++ compilers do this optimiza-
tion on their own, so this serves only to clutter the source.

Do not use “using” directives or declarations in headers or prior to
an #include. [no-using-in-headers]

A using directive or declaration imports names from one namespace into
another, often the global namespace.

This does, however, lead to pollution of the global namespace. This can
be manageable if it’s for a single source file; however, if the directive is in
a header file, it can affect many different source files. In most cases, the
author of these sources won’t be expecting this.

Having using in a header can also hide errors. For example:

// In first header A.h:
using namespace std;

// In second header B.h:
#include "A.h"

// In source file B.cxx
#include "B.h"

vector<int> x; // Missing std!

Here, a reference to std: : vector in B. cxx is mistakenly written without
the std:: qualifier. However, it works anyway because of the using
directive in A. h. But imagine that later B.h is revised so that it no longer
uses anything from A.h, so the #include of A.h is removed. Suddenly,
the reference to vector in B. cxx no longer compiles. Now imagine there
are several more layers of #include and potentially hundreds of affected

11 Version 2.1



276

277

278

279

281

282

283

284

285

286

287

288

289

290

291

292

293

294

3.2 Control flow 3 CODING

3.2

source files. To try to prevent problems like this, headers should not use
using outside of classes. (Within a class definition, using can have a
different meaning that is not covered by this rule.)

»

For similar reasons, if you have a using directive or declarationina “. cxx
file, it should come after all #include directives. Otherwise, the using
may serve to hide problems with missing namespace qualifications in the
headers.

This rule does not apply when using is used to define a type alias (similarly
to typedef).

Control flow

Do not change aloop variable inside a for loop block. [do-not-modify-
for-variable]

When you write a for loop, it is highly confusing and error-prone to change
the loop variable within the loop body rather than inside the expression exe-
cuted after each iteration. It may also inhibit many of the loop optimizations
that the compiler can perform.

Prefer range-based for loops. [prefer-range-based-for]

Prefer a range-based for to a loop with explicit iterators. That is, prefer:

std: :vector<int> v = ...;
for (int x : v) {
doSomething (x);

to

std: :vector<int> v = ...;
for (std::vector<int>::const_iterator it = v.begin();
it != v.end();
++1it)

doSomething (*it);

-

12 Version 2.1



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

31

312

313

3.2 Control flow 3 CODING

In some cases you can’t make this replacement; for example, if you need to
call methods on the iterator itself, or you need to manage multiple iterators
within the loop. But most simple loops over STL ranges are more simply
written with a range-based for.

As of C++20, you can initialize additional variables in a range-based for:

void foo (const std::vector<float>& v) {
for (int i = 0; float £ : v) {

std::cout << ji++ << " " << f << "\n";

Switch statements should have a default clause. [switch-default]

A switch statement should have a default clause, rather than just falling
off the bottom, as a cue to the reader that this case was expected.

In some cases, a switch statement may be on a enum and includes case
clauses for all possible values of the enum. In such cases, a default cause
is not required. Recent compilers will generate warnings if some elements
of an enum are not handled in a switch. This mitigates the risk that a
switch does not get updated after a new enum value is added.

Each clause of a switch statement must end with break. [switch-
break]

If you must “fall through” from one switch clause to another (excluding
the trivial case of a clause with no statements), this should be explicitly
indicated using the fallthrough attribute. This should, however, be a
rare case.

switch (case) {

case 1:
doSomething() ;
[[fallthrough]];

case 2:
doSomethingMore() ;
break;

13 Version 2.1



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

3.3 Object life cycle 3 CODING

3.3
3.3.1

Recent compilers will warn about such constructs unless you use the at-
tribute or a special comment. For new code, using the attribute is preferred.

An if-statement which does not fit in one line must have braces
around the conditional statement. [if-bracing]

This makes code much more readable and reliable, by clearly showing the
flow paths.

The addition of a final else is particularly important in the case where
you have if/else-if. To be safe, even single statements should be explicitly
blocked by {}.

if (val == thresholdMin) {
statement;

}

else if (val == thresholdMax) {
statement;

}

else {
statement;

Do not use goto. [no-goto]
Use break or continue instead.

This statement remains valid also in the case of nested loops, where the use
of control variables can easily allow to break the loop, without using goto.

goto statements decrease readability and maintainability and make testing
difficult by increasing the complexity of the code.

If goto statements must be used, it’s better to use them for forward branch-
ing than backwards, and the functions involved should be kept short.

Object life cycle
Initialization of variables and constants

Declare each variable with the smallest possible scope and initialize
it at the same time. [variable-initialization]

14 Version 2.1



335

336

337

338

339

340

34

342

343

344

3.3

Object life cycle 3 CODING

It is best to declare variables close to where they are used. Otherwise you
may have trouble finding out the type of a particular variable.

It is also very important to initialize the variable immediately, so that its
value is well defined.

int value = -1; // initial value clearly defined
int maxvalue; // initial value undefined ...
// NOT recommended

« Avoid use of “magic literals” in the code. [no-magic-literals]

If some number or string has a particular meaning, it’s best to declare a
symbol for it, rather than using it directly. This is especially true if the same
value must be used consistently in multiple places.

Bad example:

class A
{
TH1* m_array[10];
}s
void A::foo()
{
for (int i = 0; i < 10; i++) {
m_array[i] = dynamic_cast<TH1+*>
(ghirectory()->Get (TString ("hist_ ") +
TString::Itoa(i,10)));
}
Better example:
class A
{
static const s_numberOfHistograms = 10;
static TString s_histPrefix;

15 Version 2.1



345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

3.3 Object life cycle 3 CODING

TH1* m_array[s_numberOfHistograms];

s
TString s_histPrefix = "hist_";

void A::foo()
{
for (int i = 0; 1 < s_numberOfHistograms; i++) {
TString istr = TString::Itoa (i, 10); // base 10
m_array[i] = dynamic_cast<TH1*>
(gDirectory()->Get (s_histPrefix + istr);

It is not necessary to turn every literal into a symbol. For example, the
‘10’ in the example above in the Itoa call, which gives the base for the
conversion, would probably not benefit from being made a symbol, though
a comment might be helpful. Similarly, sometimes reserve () is called on
a std: :vector before it is filled with a value that is essentially arbitrary.
It probably also doesn’t help to make this a symbol, but again, a comment
would be helpful. Strings containing text to be written as part of a log
message are also best written literally.

In general, though, if you write a literal value other than ‘0’, ‘1’, true,
false, or a string used in a log message, you should consider defining a
symbol for it.

Use the <numbers> header for mathematical constants. [math-
constants]

Basic mathematical constants are available in the header <numbers>. Use
these in preference to the M_ constants from math. h or explicit definitions:

#include <numbers>
#include <cmath>
double f (double x) {
return std::sin (x * std::numbers::pi);

+ Declare each type of variable in a separate declaration statement, and

16 Version 2.1



361

362

363

364

365

366

367

368

369

370

37

372

373

374

375

376

377

378

379

380

381

3.3 Object life cycle 3 CODING

do not declare different types (e.g. int and int¥*) in one declaration
statement. [separate-declarations]

Declaring multiple variables on the same line is not recommended. The
code will be difficult to read and understand.

Some common mistakes are also avoided. Remember that when you declare
a pointer, a unary pointer is bound only to the variable that immediately
follows.

int 1, *ip, 1a[100], (*ifp)();

LoadModule* oldLm
LoadModule* newLm

0;
0;

Bad example: both ip and jp were intended to be pointers to integers, but
only ip is — jp is just an integer!

int* ip, jp;

Do not use the same variable name in outer and inner scope. [no-
variable-shadowing]

Otherwise the code would be very hard to understand; and it would certainly
be very error prone.

Some compilers will warn about this.
Be conservative in using auto. [using-auto]

The auto keyword allows one to omit explicitly writing types that the
compile can deduce. Examples:

auto x = 10;
auto y = 42ul;
auto it = vec.begin();

Some authorities have recommended using auto pretty much everywhere
you can (calling it “auto almost always”). However, our experience has
been that this adversely affects the readability and robustness of the code.
It generally helps a reader to understand what the code is doing if the type

17 Version 2.1



382

383

384

385

386

387

388

389

390

391

392

393

394

3.3 Object life cycle 3 CODING

1

2

is apparent, but with auto, it often isn’t. Using auto also makes it more
difficult to find places where a particular type is used when searching the
code with tools like LXR. It can also make it more difficult to track errors
back to their source:

const Foo* doSomething() ;

a lot of code here
auto foo = doSomething();
// What is the type of foo here? You have to look up
// doSomething() in order to find out! Makes it much
// harder to find all places where the type Foo
// gets used.

// If the return type of doSomething() changes, you'll
// get an error here, not at the doSomething() call.
foo->doSomethingElse() ;

auto has also been observed to be a frequent source of errors leading to
unwanted copies of objects. For example, in this code:

std::vector<std: :vector<int> > arr = ...;
for (auto v : arr) {
for (auto elt : v) {

each element of the outermost vector will be copied, as the assignment to
v will be done by value. One would probably want:

std::vector<std: :vector<int> > arr = ...;
for (const auto& v : arr) {
for (auto elt : v) {

but having to be aware of the type like this kind of obviates the motivation
for using auto in the first place. Using the type explicitly makes this sort
of error much more difficult.

The current recommendation is to generally not use auto in place of a
(possibly-qualified) simple type:

// Use these
int x = 42;

18 Version 2.1



395

396

397

398

399

400

401

402

403

404

3.3 Object life cycle

3 CODING

const Foo* foo = doSomething();
for (const CaloCell* cell : caloCellContainer)
Foo foo (x);

// Rather than these

auto x = 42;

auto foo = doSomething();

for (auto cell : caloCellContainer)
auto foo = Foo {x};

There are a few sorts of places where it generally makes sense to use auto.

— When the type is already evident in the expression and the

declaration

would be redundant. This is usually the case for expressions with new

or make_unique.

1 | // auto is fine here.
: |auto foo = new Foo;
3 |auto ufoo = std::make_unique<Foo>() ;

— When you need a declaration for a complicated derived type, where

the type itself isn’t of much interest.

1 // Fine to use auto here; the full name of the

2 |// type is too cumbersome to be useful.

3 |std::map<int, std::string> m = ..;

+ |auto ret = m.insert (std::make_pair (1, "x"));

s |i1f (ret.second)

— In the case where a class method returns a type defined within the

class, using the auto syntax to write the return type at the end of the
signature can make things more readable when the method is defined

out-of-line:
1 |template <class T> class C {
: |public:
3 using ret_t = int;
4 ret_t foo();
5|1

19

Version 2.1



405

406

407

408

409

410

411

412

413

414

415

416

47

418

419

420

421

422

423

3.3 Object life cycle 3 CODING

3.3.2

7 |// Verbose: the return type is interpreted at the
s |// global scope, so it needs to be qualified with
s |// the class name.

0 |template <class T>

u |typename C<T>::ret_t C<T>::foo()

s |// With this syntax, the return type is
u | // interpreted within the class scope.
5 |template <class T>

6 |auto C<T>::foo() -> ret_t

— auto may also be useful in writing generic template code.

In some cases, C++20 allows declaring a template function without the
template keyword when the argument is declared as auto:

auto fn (auto x) { return x + 1; }

It is recommended to avoid this syntax for public interfaces.

In general, the decision as to whether or not to use auto should be made
on the basis of what makes the code easier to read. It is bad practice to use
it simply to save a few characters of typing.

Constructor initializer lists

Let the order in the initializer list be the same as the order of the
declarations in the header file: first base classes, then data members.
[member-initializer-ordering]

It is legal in C++ to list initializers in any order you wish, but you should
list them in the same order as they will be called.

The order in the initializer list is irrelevant to the execution order of the
initializers. Putting initializers for data members and base classes in any or-
der other than their actual initialization order is therefore highly confusing
and can lead to errors.

Class members are initialized in the order of their declaration in the class;
the order in which they are listed in a member initialization list makes no

20 Version 2.1



424

425

426

427

428

429

430

431

3.3 Object life cycle 3 CODING

difference whatsoever! So if you hope to understand what is really going on
when your objects are being initialized, list the members in the initialization
list in the order in which those members are declared in the class.

Here, in the bad example, m_data is initialized first (as it appears in the
class) beforem_size, even though m_size is listed first. Thus, the m_data
initialization will read uninitialized data from m_size.

Bad example:

class Array
{
public:
Array(int lower, int upper);
private:
int* m_data;
unsigned m_size;
int m_lowerBound;
int m_upperBound;
s
Array: :Array(int lower, int upper)
m_size(upper-lower+1),
m_lowerBound(lower),
m_upperBound (upper) ,
m_data(new int[m_size])

Correct example:

class Array
{
public:

Array(int lower, int upper);
private:

unsigned m_size;

int m_lowerBound;

int m_upperBound;

int* m_data;

21 Version 2.1



432

433

3.3

Object life cycle

3 CODING

Array: :Array(int lower,

m_lowerBound (lower),
m_upperBound (upper) ,

int upper)
m_size(upper-lower+1),

m_data(new int[m_size]) {

Virtual base classes are always initialized first, then base classes, data
members, and finally the constructor body for the derived class is run.

class Derived

{
public:

S/
//
// will not work

int x = 1;

Derived();

private:
int m_jM;
Base m_bM;

}s

Derived: :Derived(int i)
// Recommended order

public Base

explicit Derived(int 1i);
// The keyword explicit prevents the constructor
// from being called implicitly.

Derived dNew = X;

// m_JjM is number 2
// m_bM is number 3

// Base 1s number 1

Base(i), m_jM(i), m_bM(i) {
1 2 3

s 3.3.3 Copying of objects

435

436

437

438

« A function must never return, or in any other way give access to,
references or pointers to local variables outside the scope in which
they are declared. [no-refs-to-locals]

Returning a pointer or reference to a local variable is always wrong because

Version 2.1



3.3 Object life cycle 3 CODING

43 it gives the user a pointer or reference to an object that no longer exists.
440 Bad example:
a1 You are using a complex number class, Complex, and you write a method
a2 that looks like this:

1 |Complex&

: |calculateCl (const Complex& nl, const Complex& n2)

s | {

4 double a = nl.getReal()-2*n2.getReal();

5 double b = nl.getImaginary()*n2.getImaginary();

6

7 // Create local object.

8 Complex Cl(a,b);

9

10 // Return reference to local object.

11 // The object is destroyed on exit from this

12 // function: trouble ahead!

13 return C1;

u |
43 In fact, most compilers will spot this and issue a warning,.
a4 This particular function would be better written to return the result by
a5 value:

1 |Complex calculateCl (const Complex& nl,

2 const Complex& n2)

s |

4 double a = nl.getReal()-2*n2.getReal();

5 double b = nl.getImaginary()+*n2.getImaginary() ;

6

7 return Complex(a,b);

s | )
146 « If objects of a class should never be copied, then the copy con-
a7 structor and the copy assignment operator should be deleted. [copy-
448 protection]
449 Ideally the question whether the class has a reasonable copy semantic will

23 Version 2.1



450

451

452

453

454

455

456

3.3 Object life cycle 3 CODING

naturally be a result of the design process. Do not define a copy method for
a class that should not have it.

By deleting the copy constructor and copy assignment operator, you can
make a class non-copyable.

// There is only one ATLASExperimentalHall,

// and that should not be copied

class ATLASExperimentalHall

{

public:
ATLASExperimentalHall();
~ATLASExperimentalHall() ;

// Delete copy constructor to disallow copying.
ATLASExperimentalHall (const ATLASExperimentalHall& )
= delete;

// Delete assignment operator to disallow assignment|
ATLASExperimentalHall&
operator=(const ATLAS_ExperimentalHall&) = delete;

s

In older versions of the language, this was achieved by declaring the deleted
methods as private (and not implementing them). For new code, prefer
explicitly deleting the functions.

// There is only one ATLASExperimentalHall,

// and that should not be copied

class ATLASExperimentalHall

{

public:
ATLASExperimentalHall();
~ATLASExperimentalHall() ;

private:
// Disallow copy constructor and assignment.
ATLASExperimentalHall (const ATLASExperimentalHall&) ;
ATLASExperimentalHall& operators=

24 Version 2.1



457

458

459

460

461

462

464

465

466

467

468

469

470

3.3 Object life cycle 3 CODING

(const ATLAS_ExperimentalHall&) ;
s

« If a class owns memory via a pointer data member, then the copy

constructor, the assignment operator, and the destructor should all
be implemented. [define-copy-and-assignment]

The compiler will generate a copy constructor, an assignment operator, and
a destructor if these member functions have not been declared. A compiler-
generated copy constructor does memberwise initialization and a compiler-
generated copy assignment operator does memberwise assignment of data
members and base classes. For classes that manage resources (examples:
memory (new), files, sockets) the generated member functions probably
have the wrong behavior and must be implemented by the developer. You
have to decide if the resources pointed to must be copied as well (deep
copy), and implement the correct behavior in the operators. Of course, the
constructor and destructor must be implemented as well.

Bad Example:
class String
{
public:
String(const char #*value=0);
~String(); // Destructor but no copy constructor
// or assignment operator.
private:
char *m_data;
¥

String: :String(const char *value)

{ // Correct behavior implemented in constructor.
m_data = new char[strlen(value)]; // Fill m data

¥

String: :~String()

{ // Correct behavior implemented in destructor
delete m_data;

25 Version 2.1



471

472

473

474

475

3.3 Object life cycle

3 CODING

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

// Declare and construct a. m_data points to "Hello"
String a("Hello");

// Open new scope

{ // Declare and construct b.
// m_data points to "World"
String b("world");

b=a;
// Execute default op= as synthesized by the compiler.
// This is simply memberwise assignment.

// For pointers like m_data, this is a bitwise copy
// ==> m_data of "a" and "b" now point to the

// same string "Hello"

// ==> 1) Memory b used to point to never deleted:
// a possible memory leak!

// 2) When either a or b goes out of scope,

// its destructor will delete the memory
S/ still pointed to by the other.

// Close scope: b's destructor called;

// memory still pointed to by ‘a' deleted!
String c=a;

// But m _data of a is undefined!!

+ Assignment member functions must work correctly when the left

and right operands are the same object. [self-assign]

This requires some care when writing assignment code, as this case (when
left and right operands are the same) may require that most of the code is
bypassed.

A& A::operator=(const A& a)

{

26 Version 2.1



476

477

478

479

480

481

482

483

484

486

487

488

489

490

491

492

493

494

495

496

497

498

3.4 Conversions 3 CODING

if (this != &a) {

3.4 Conversions

1

2

4

« Use explicit rather than implicit type conversion. [avoid-implicit-

conversions]|

Most conversions are bad in some way. They can make the code less
portable, less robust, and less readable. It is therefore important to use only
explicit conversions. Implicit conversions are almost always bad.

Use the C++ cast operators (dynamic_cast and static_cast)
instead of the C-style casts. [use-c++-casts]

In general, casts should be strongly discouraged, especially the old style C
casts.

The new cast operators give the user a way to distinguish between different
types of casts, and to ensure that casts only do what is intended and nothing
else.

The C++ static_cast operator allows explicitly requesting allowed im-
plicit conversions and between integers and enumerations. It also allows
casting pointers up and down a class hierarchy (as long as there’s no vir-
tual inheritance), but no checking is done when casting from a less- to a
more-derived type.

The C++ dynamic_cast operator is used to perform safe casts down or
across an inheritance hierarchy. One can actually determine whether the
cast succeeded because failed casts are indicated either by a bad_cast
exception or a null pointer. The use of this type of information at run time
is called Run-Time Type Identification (RTTI).

int n = 3;
double r = static_cast<double>(n) * a;

class Base { };

27 Version 2.1



499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

3.4 Conversions 3 CODING

class Derived : Base { };
void f(Derived* d_ptr)
{

Base* b_ptr = dynamic_cast<Base*>(d_ptr);

« Do not convert const objects to non-const. [no-const-cast]

In general you should never cast away the constness of objects.

If you have to use a const_cast to remove const, either you're writing
some low-level code that that’s deliberately subverting the C++ type system,
or you have some problem in your design or implementation that the
const_cast is papering over.

Sometimes you’'re forced to use a const_cast due to problems with exter-
nal libraries. But if the library in question is maintained by ATLAS, then
try to get it fixed in the original library before resorting to const_cast.

The keyword mutable allows data members of an object that have been
declared const to remain modifiable, thus reducing the need to cast away
constness. The mutable keyword should only be used for variables which
are used for caching information. In other words, the object appears not to
have changed but it has stored something to save time on subsequent use.

Do not use reinterpret_cast. [no-reinterpret-cast]

reinterpret_cast is machine-, compiler- and compile-options-
dependent. It is a way of forcing a compiler to accept a type conversion
which is dependent on implementation. It blows away type-safety, violates
encapsulation and more importantly, can lead to unpredictable results.

reinterpret_cast has legitimate uses, such as low-level code which
deliberately goes around the C++ type system. Such code should usually
be found only in the core and framework packages.

Exception: reinterpret_cast is required in some cases if one is not
using old-style casts. It is required for example if you wish to convert a

28 Version 2.1



523

524

525

526

527

528

529

530

531

532

533

534

3.4 Conversions 3 CODING

callback function signature (X11, expat, Unix signal handlers are common
causes). Some external libraries (X11 in particular) depend on casting
function pointers. If you absolutely have to work around limitations in
external libraries, you may of course use it.

One particularly nasty case to be aware of and to avoid is pointer aliasing.
If two pointers have different types, the compiler may assume that they
cannot point at the same object. For example, in this function:

int convertAndBuffer (int* buf, float x)

{
float* fbuf = reinterpret_cast<float#*>(buf);
*fbuf = x;
return *buf;

}

the compiler is entitled to rewrite it as

int convertAndBuffer (int* buf, float x)
{
int ret = *buf;
float* fbuf = reinterpret_cast<float#*>(buf);
*fbuf = x;
return ret;

(As a special case, you can safely convert any pointer type to or from a
charx.) The proper way to do such a conversionis witha std: :bit_cast:

#include <bit>

int convertAndBuffer (int* buf, float x)

{

*buf = std::bit_cast<int> (x);
return *buf;

Prior to C++20, the recommended way to do this was with a union, but that
should not be used for new code.

29 Version 2.1



3.5 The class interface 3 CODING

s 3.5 The class interface

s 3.5.1 Inline functions

537 « Header files must contain no implementation except for small func-
538 tions to be inlined. These inlined functions must appear at the end
539 of the header after the class definition. [inline-functions-impls]

540 If you have many inline functions, it is usually better to split them out into
sa1 a separate file, with extension “. icc”, that is included at the end of the
542 header.

543 Inline functions can improve the performance of your program; but they
544 also can increase the overall size of the program and thus, in some cases,
545 have the opposite result. It can be hard to know exactly when inlining is
546 appropriate. As a rule of thumb, inline only very simple functions to start
547 with (one or two lines). You can use profiling information to identify other
548 functions that would benefit from inlining.

549 Use of inlining makes debugging hard and, even worse, can force a complete
550 release rebuild or large scale recompilation if the inline definition needs to
551 be changed.

52 3.5.2 Argument passing and return values

553 « Pass an unmodifiable argument by value only if it is of built-in type
554 or small; otherwise, pass the argument by const reference (or by
555 const pointer if it may be null). [large-argument-passing]

556 An object is considered small if it is a built-in type or if it contains at most
557 one small object. Built-in types such as char, int, and double can be
558 passed by value because it is cheap to copy such variables. If an object is
559 larger than the size of its reference (typically 64 bits), it is not efficient to
560 pass it by value. Of course, a built-in type can be passed by reference when
561 appropriate.

1 |void func(char c);

2 |void func(int 1i);

3 |void func(double d);

4+ |void func(complex<float> c);

30 Version 2.1



562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

3.5 The class interface 3 CODING

6

7

8

void func(Track t);

Arguments of class type are often costly to copy, so it is preferable to pass
a const reference to such objects; in this way the argument is not copied.
Const access guarantees that the function will not change the argument.

In terms of efficiency, passing by pointer is the same as passing by reference.
However, passing by reference is preferred, unless it is possible to the object
to be missing from the call.

void func(const LongString& s);

If an argument may be modified, pass it by non-const reference
and clearly document the intent. [modifiable-arguments]

For example:

void updateTrack(const Hit& h, Track& t);

Again, passing by references is preferred, but a pointer may be used if the
object can be null.

Use unique_ptr to pass ownership of an object to a function. [pass-
ownership]

To pass ownership of an object into a function, use unique_ptr (by value):

void foo (std::unique_ptr<Object> obj);

auto obj = std::make_unique<Object>();

foo (std::move (obj);

In most cases, unique_ptr should be passed by value. There are however
a few possible use cases for passing unique_ptr by reference:

31 Version 2.1



578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

3.5 The class interface 3 CODING

— The called function may replace the object passed in with another one.
In this case, however, consider returning the new object as the value
of the function.

— The called function may only conditionally take ownership of the
passed object. This is likely to be confusing and error-prone and
should probably be avoided. Consider if a shared_ptr would be
better in this case.

There is basically no good case for passing unique_ptr as a const refer-
ence.

If you need to interoperate with existing code, object ownership may be
passed by pointer. The fact that ownership is transferred should be clearly
documented.

Do not pass ownership using references.

Here are a some additional examples to illustrate this. Assume that class C
contains a member Foo* m_owning_pointer which the class deletes.
(In modern C++, it would of course usually be better for this to be a
unique_ptr.)

void C::takesOwnership (std::unique_ptr<Foo> fo00)

{

delete m_owning_pointer;
m_owning_ pointer = foo.release();

void C::takesOwnership (Foo* foo)

{

delete m_owning_pointer;
m_owning_pointer = foo;

void C::takesOwnership (Foo& foo)

32 Version 2.1



595

596

597

598

599

600

601

602

603

604

605

606

3.5 The class interface 3 CODING

19

20

21

1

2

delete m_owning_pointer;
m_owning_ pointer = &foo;

Return basic types or new instances of a class type by value. [return-
by-value]

Returning a class instance by value is generally preferred to passing an
argument by non-const reference:

void getVector (std::vector<int>& v)
{
v.clear();
for (int i=0; i < 10; i++) v.push_back(v);

std::vector<int> getVector()
{
std::vector<int> v;
for (int i=0; i < 10; i++) v.push_back(v);
return v;

The return-value optimization plus move semantics will generally mean
that there won’t be a significant efficiency difference between the two.

Use unique_ptr to return ownership. [returning-ownership]

If a function is returning a pointer to something that is allocated off the heap
which the caller is responsible for deleting, then return a unique_ptr.

If compatibility with existing code is an issue, then a plain pointer may be
used, but the caller takes ownership should be clearly documented.

Do not return ownership via a reference.

std: :unique_ptr<Foo> makeFoo ()

33 Version 2.1



607

608

609

610

611

612

613

614

615

616

3.5 The class interface 3 CODING

1

2

3

return std::make_unique<Foo> (...);

// OK 1if documented

// makeFoo() returns a newly-allocated Foo;
// caller must delete it.

Foo* makeFoo()

{ return new Foo (...);
}
// NO!
Foo& makeFoo()
{
Foo* foo = new Foo (...);

return *foo;

+ Have operator=return a reference to *this. [assignment-return-

value]

This ensures that

a=>b = c;

will assign c to b and then b to a as is the case with built-in objects.

Use std: :span to represent and pass a bounded region of memory.
[span]

In particular, use std: : span instead of passing a pointer with a sepa-
rate element count (or even worse, a pointer to an array with no bounds
information).

So you can use this:

#include <span>
int sum (const std::span<int>& s)

{

34 Version 2.1



3.5 The class interface 3 CODING

4 int ret = 0;

5 for (int i : s) ret += 1i;

6 return ret;

7|}
617 instead of

1 |int sum (const int#* p, size_t n)

2 | {

3 int ret = 0;

4 for (size_t i = 0; i < n; i++) ret += p[i];

5 return ret;

s |}
618 One might expect that std: : span would include an at () method, to
619 allow indexing with bounds checking, but that is only available in C++23.
620 In the meantime, CxxUtils: : span is very similar to std: : span but does
621 implement at ().

&2 3.5.3 const correctness

623 « Declare a pointer or reference argument, passed to a function, as
624 const if the function does not change the object bound to it. [const-
625 arguments]

626 An advantage of const-declared parameters is that the compiler will ac-
627 tually give you an error if you modify such a parameter by mistake, thus
628 helping you to avoid bugs in the implementation.

: |ostream& operator<<(ostream& out, const String& s);

629 « The argument to a copy constructor and to an assignment operator
630 must be a const reference. [copy-ctor-arg]

o This ensures that the object being copied is not altered by the copy or
632 assign.

633 + In a class method, do not return pointers or non-const references
634 to private data members. [no-non-const-refs-returned]

35 Version 2.1



3.5 The class interface 3 CODING

635 Otherwise you break the principle of encapsulation.

636 If necessary, you can return a pointer to a const or const reference.

637 This does not mean that you cannot have methods returning an iterator
638 if your class acts as a container.

639 An allowed exception to this rule if the use of the singleton pattern. In
640 that case, be sure to add a clear explanation in a comment so that other
61 developers will understand what you are doing.

642 « Declare as const a member function that does not affect the state
643 of the object. [const-members]

644 Declaring a member function as const has two important implications.
645 First, only const member functions can be called for const objects; and
646 second, a const member function will not change data members

647 It is a common mistake to forget to const declare member functions that
648 should be const.

649 This rule does not apply to the case where a member function which does
650 not affect the state of the object overrides a non-const member function
651 inherited from some super class.

652 « Donotlet const member functions change the state of the program.
653 [really-const]

654 A const member function promises not to change any of the data members
655 of the object. Usually this is not enough. It should be possible to call a
656 const member function any number of times without affecting the state
657 of the complete program. It is therefore important that a const member
658 function refrains from changing static data members or other objects to
659 which the object has a pointer or reference.

« 3.5.4 Overloading and default arguments

661 + Use function overloading only when methods differ in their argu-
662 ment list, but the task performed is the same. [function-overloading]
663 Using function name overloading for any other purpose than to group
664 closely related member functions is very confusing and is not recommended.

36 Version 2.1



665

666

667

668

669

670

671

672

3.5 The class interface 3 CODING

3.5.5 Comparisons

20

21

22

23

24

25

26

27

28

+ Define comparisons for custom types using operator== and

operator<=>. [comparison-operators]

Comparisons of for a custom class should be written using operator==
(for equality/inequality) and operator<=> (for ordering). The compiler
will supply the other comparison operators (operator!=, operators,
etc.) automatically. Where possible, operator<=> is best defined using
the same operator on the members involved. Examples:

#include <compare>
#include <tuple>

class S

{
public:
bool operator== (const S& other)

{

return m_key == other.m_key;

}

std: :strong_ordering operator<=> (const S& other)

{

return m_key <=> other.m_key;

}
private:
int m_key;

s

class Version

{
public:
bool operator== (const Version& other)
{
return m_major == other.m_major &&
m_minor == other.m_minor;
3

37 Version 2.1



673

674

675

676

677

678

679

680

681

682

683

684

685

3.6 newand delete 3 CODING

29
30
31
32
33
34
35
36
37
38

39

3.6

std: :strong_ordering
operator<=> (const Version& other)

{
return
std: :make_tuple (m_major, m_minor) <=>
std: :make_tuple (other.m_major, other.m_minor);
}
private:

int m_major;
int m_minor;

}s

new and delete

Do not use new and delete where automatic allocation will work.
[auto-allocation-not-new-delete]

Suppose you have a function that takes as an argument a pointer to an
object, but the function does not take ownership of the object. Then suppose
you need to create a temporary object to pass to this function. In this case,
it’s better to create an automatically-allocated object on the stack than it
is to use new / delete. The former will be faster, and you won’t have the
chance to make a mistake by omitting the delete.

Foo* foo = new Foo0;
doSomethingWithFoo (foo);
delete foo;

Foo foo;
doSomethingWithFoo (&foo);

Match every invocation of new with one invocation of delete in
all possible control flows from new. [match-new-delete]

A missing delete would cause a memory leak.

However, in the Gaudi/Athena framework, an object created with new

38 Version 2.1



3.6 newand delete 3 CODING

686 and registered in StoreGate is under control of StoreGate and must not be
687 deleted.
688 In new code, you should generally use make_unique for this.

1 |#include <memory>

2

3

4 DataVector<C>* dv = ...;

5 auto c = std::make_unique<C>("argument");

6 e . e

7 if (test) {

8 dv->push_back (std::move (c));

9 ¥
689 auto_ptr was an attempt to do something similar to unique_ptr in older
690 versions of the language. However, it has some serious deficiencies and
601 should not be used in new code.
692 + A function should explicitly document if it takes ownership of a
603 pointer passed to it as an argument. [explicit-ownership]
694 The default expectation for a function should be that it does not take own-
695 ership of pointers passed to it as arguments. In that case, the function must
696 not invoke delete on the pointer, nor pass it to any other function that
607 takes ownership.
698 However, if the function is clearly documented as taking ownership of the
699 pointer, then it must either delete the pointer or pass it to another function
700 which will ensure that it is eventually deleted.
701 Rather than simply documenting that a function takes ownership of a
702 pointer, it is recommended that you use std: :unique_ptr to explicitly
703 show the transfer of ownership.

1 |void foo (std::unique_ptr<C> ptr);

4 std::unique_ptr<C> p (new C);

6 foo (std::move (p));

39 Version 2.1



704

705

706

707

708

709

710

m

712

713

714

715

716

n7

718

719

720

721

722

723

724

725

726

3.7 Static and global objects 3 CODING

3.7

1

2

« Do not access a pointer or reference to a deleted object. [deleted-

objects]

A pointer that has been used as argument to a delete expression should
not be used again unless you have given it a new value, because the language
does not define what should happen if you access a deleted object. This
includes trying to delete an already deleted object. You should assign
the pointer to nullptr or a new valid object after the delete is called;
otherwise you get a “dangling” pointer.

After deleting a pointer, assign it to nullptr. [deleted-objects-2]

C++ guarantees that deletion of null pointers is safe, so this gives some
safety against double deletes.

X* myX = makeAnX() ;
delete myX;
myX = nullptr;

This is of course not needed if the pointer is about to go out of scope, or
when objects are deleted in a destructor (unless it’s particularly complicated).
But this is a good practice if the pointer persists beyond the block of code
containing the delete (especially if it’s a member variable).

Static and global objects
Do not declare variables in the global namespace. [no-global-variables]

If necessary, encapsulate those variables in a class or in a namespace. Global
variables violate encapsulation and can cause global scope name clashes.
Global variables make classes that use them context-dependent, hard to
manage, and difficult to reuse.

For variables that are used only within one “. cxx” file, put them in an
anonymous namespace.

namespace {

40 Version 2.1



727

728

729

730

731

732

733

734

735

736

737

738

739

740

M

742

743

3.8 Object-oriented programming 3 CODING

3.8

int counter;

Do not put functions into the global namespace. [no-global-functions]

Similarly to variables, functions declarations should be put in a namespace.
If they are used only within one “. cxx” file, then they should be put in an
anonymous namespace.

In a few cases, it might be necessary to declare a function in the global
namespace to have overloading work properly, but this should be an excep-
tion.

Object-oriented programming
Do not declare data members to be public. [no-public-data-members]

This ensures that data members are only accessed from within member
functions. Hiding data makes it easier to change implementation and
provides a uniform interface to the object.

class Point
{
public:

Number x() const;
private:

Number m_x;

}s

The fact that the class Point has a data member m_x which holds the x
coordinate is hidden.

An exception is objects that are intended to be more like C-style structures
than classes. Such classes should usually not have any methods, except
possibly a constructor to make initialization easier.

41 Version 2.1



744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

77

772

773

3.8 Object-oriented programming 3 CODING

« If a class has at least one virtual method then it must have a public

virtual destructor or (exceptionally) a protected destructor. [virtual-
destructor]

The destructor of a base class is a member function that in most cases
should be declared virtual. It is necessary to declare it virtual in a base
class if derived class objects are deleted through a base class pointer. If
the destructor is not declared virtual, only the base class destructor will be
called when an object is deleted that way.

There is one case where it is not appropriate to use a virtual destructor:
a mix-in class. Such a class is used to define a small part of an interface,
which is inherited (mixed in) by subclasses. In these cases the destructor,
and hence the possibility of a user deleting a pointer to such a mix-in base
class, should normally not be part of the interface offered by the base class.
It is best in these cases to have a nonvirtual, nonpublic destructor because
that will prevent a user of a pointer to such a base class from claiming
ownership of the object and deciding to simply delete it. In such cases it
is appropriate to make the destructor protected. This will stop users from
accidentally deleting an object through a pointer to the mix-in base-class,
so it is no longer necessary to require the destructor to be virtual.

Always re-declare virtual functions as virtual in derived classes.
[redeclare-virtual]

This is just for clarity of code. The compiler will know it is virtual, but
the human reader may not. This, of course, also includes the destructor,
as stated in item [virtual-destructor, page 42]. Virtual functions in derived
classes which override methods from the base class should also be declared
with the override keyword. If the signature of the method is changed
in the base class, so that the declaration in the derived class is no longer
overriding it, this will cause the compiler to flag an error. (As an exception,
override is not required for destructors. Since there is only one possible
signature for a destructor, override doesn’t add anything.)

class B

{
public:
virtual void foo(int);

}s

42 Version 2.1



774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

3.8 Object-oriented programming 3 CODING

class D : public B
{
public:
virtual void foo(int) override;
s

+ Avoid multiple inheritance, except for abstract interfaces. [no-

multiple-inheritance]

Multiple inheritance is seldom necessary, and it is rather complex and error
prone. The only valid exception is for inheriting interfaces or when the
inherited behavior is completely decoupled from the class’s responsibility.

For a detailed example of a reasonable application of multiple inheritance,
see [12], item 43.

Avoid the use of friend declarations. [no-friend]

Friend declarations are almost always symptoms of bad design and they
break encapsulation. When you can avoid them, you should.

Possible exceptions are the streaming operators and binary operators on
classes. Other possible exceptions include very tightly coupled classes and
unit tests.

Avoid the use of protected data members. [no-protected-data]

Protected data members are similar to friend declarations in that they
allow a controlled violation of encapsulation. However, it is even less well-
controlled in the case of protected data, since any class may derive from
the base class and access the protected data.

The use of protected data results in one class depending on the internals
of another, which is a maintenance issue should the base class need to
change. Like friend declarations, the use of protected member data should
be avoided except for very closely coupled classes (that should generally be
part of the same package). Rather, you should define a proper interface for
what needs to be done (parts of which may be protected).

43 Version 2.1



3.9 Notes on the use of library functions. 3 CODING

» 3.9 Notes on the use of library functions.

799 « Use std: :abs to calculate an absolute value. [std-abs]

00 The return type of std: :abs will conform to the argument type; other
801 variants of abs may not do this.

802 In particular, beware of this:

1 |#include <cstdlib>
: |float foo (float x)

s | {

4 return abs(x);

5|
503 which will truncate x to an integer. (Clang will warn about this.)
804 Conversely, in this example:

1 |#include <cmath>
: |int (int x)

s |1

4 return fabs(x);

s
805 the argument will first be converted to a float, then the result converted
806 back to an integer.
807 Using std: : abs uniformly should do the right thing in almost all cases
808 and avoid such surprises.
809 « Use C++20 ranges with caution. [ranges]
10 C++20 adds ranges, an abstraction an abstraction of something that can be
s11 iterated over. Essentially, a range is something that can return begin () and
12 end () iterators. The ranges library allows composing and transforming
13 ranges. For example:

1 |#include <ranges>

3 |auto even = [](int i) { return (i%2) == 0; };
+ |auto sq = [](int i) { return i*i; };

44 Version 2.1



3.9 Notes on the use of library functions. 3 CODING

5 |using namespace std::views;
¢ |auto r = iota(0, 6) | filter(even) | transform(sq)

"

7 |for (int i : r) std::cout << i << " ";

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

Ranges can be very useful. However, they need to be used with caution.

— Do not reimplement missing functionality yourself.

Much of that C++20 ranges library originated from an external library,
range-v3 [14]. However, many useful operations from that library
did not make it into the C++20 standard (some are added in later
versions of the standard). For example, in C++20 ranges, there is no
straightforward way to initialize a std: : vector from a range. If
such additional functionality is needed, it should be added centrally
in CxxUtils rather than being reimplemented where it is needed.
In that way, it can be shared with other parts of Athena. This also
makes it easier to replace any such reimplemented functionality with
versions from the standard library when they become available.

Functions used to define ranges should not have side effects.

One can define a range in terms of functions that filter and transform
the range, as in the example above. However, it may be difficult
to predict under exactly what circumstances these functions may be
called, as this depends on the implementation of the range components.
Therefore, functions used with ranges should not have side-effects
(and should generally execute quickly).

Beware of dangling ranges.

Ranges are often references to other objects. Like any references, they
must not outlive the object that they reference.

auto squares()

{
auto sq = [](int i) { return i*i; };
std::vector<int> v {1, 2, 3, 4};
return v | std::views::transform(sq);

45 Version 2.1



836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

3.10 Thread friendliness and thread safety 3 CODING

s’}

— Do not modify containers referenced by ranges.

Similarly, do not modify a container referenced by a range. Some
of the range components may cache results internally; changing the
underlying container may cause these to return incorrect results.

1 |std::vector<int> v {1, 2, 3, 4};

: |auto sq = [](int 1) { return i*i; };

3 |auto r = v | std::views::transform(sq);
« |v.insert (v.begin(), 5);

In general, C++20 view objects should be used directly after they are defined,
and not saved in, say, member variables.

3.10 Thread friendliness and thread safety

Code that is to be run in AthenaMT as part of an AthAlgorithm must be “thread-
friendly” While the framework will ensure that no more than one thread is
executing a given AthAlgorithm instance at one time, the code must ensure
that it doesn’t interfere with other threads. Some guidelines for this are outlined
below; but in brief: don’t use static data, don’t use mutable, and don’t cast away
const. Following these rules will keep you out of most potential trouble.

Code that runs as part of an AthService, an AthReentrantAlgorithm, a data
object implementation, or other common code may need to be fully “thread-safe;”
that is, allow for multiple threads to operate simultaneously on the same object.
The easiest way to ensure this is for the object to have no mutable internal state,
and only const methods. If, however, some threads may be modifying the state
of the object, then some sort of locking or other means of synchronization will
likely be required. A full discussion of this is beyond the scope of these guidelines.

To run successfully in a multithreaded environment, algorithmic code must also
respect the rules imposed by the framework on event and conditions data access.
This is also beyond the scope of these guidelines.

« Follow C++ thread-safety conventions for data objects. [mt-follow-
c++-conventions]

46 Version 2.1



3.10 Thread friendliness and thread safety 3 CODING

s61 The standard C++ container objects follow the rule that methods declared
862 as const are safe to call simultaneously from multiple threads, while no
863 non-const method can be called simultaneously with any other method
864 (const or non-const) on the same object.
865 Classes meant to be data objects should generally follow the same rules,
866 unless there is a good reason to the contrary. This will generally happen
867 automatically if the rules outlined below are followed: briefly, don’t use
868 static data, don’t use mutable, and don’t cast away const.
869 Sometimes it may be useful to have data classes for which non-const meth-
870 ods may be called safely from multiple threads. If so, this should be indicated
&7 in the documentation of the class, and perhaps hinted from its name (maybe
872 like ConcurrentFoo).
§73 « Do not use non-const static variables [mt-no-nonconst-static]
874 Do not use non-const static variables in thread-friendly code, either global
875 or local.

1 |int a;

: |int foo() {

3 if (a > 0) { // Bad use of global static.

4 static int count = 0;

5 return ++count; // Bad use of local static.

6 ¥

7 return 0O;

s}

9

v |struct Bar

11 {

12 static int s_x;

13 int x() { return s_x; } // Bad use of static

14 // class member.

5|}
876 A const static is, however, perfectly fine:

1 |static const std::string s = "a string"; // OK, const

47 Version 2.1



877

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

3.10

Thread friendliness and thread safety 3 CODING

It’s generally OK to have static mutex or thread-local variables:

static std::mutex m;

static thread local int a;

(Be aware, though, that thread-local variables can be quite slow.) A static
std: :atomic<T> variable may be OK, but only if it doesn’t need to be
updated consistently with other variables.

Do not cast away const [mt-no-const-cast]

This rule was already mentioned above. However, it deserves particular
emphasis in the context of thread safety. The usual convention for C++ is
that a const method is safe to call simultaneously from multiple threads,
while if you call a non-const method, no other threads can be simultaneously
accessing the same object. If you cast away const, you are subverting these
guarantees. Any use of const_cast needs to be analyzed for its effects
on thread-safety and possibly protected with locking.

For example, consider this function:

void foo (const std::vector<int>& v)

{

const_cast<std: :vector<int>&>(v) .push_back(10);

Someone looking at the signature of this function would see that it takes
only a const argument, and therefore conclude that that it is safe to call
this simultaneously with other code that is also reading the same vector
instance. But it is not, and the const_cast is what causes that reasoning
to fail.

Avoid mutable members. [mt-no-mutable]

The use of mutable members has many of the same problems as
const_cast (as indeed, mutable is really just a restricted version
of const_cast). A mutable member can generally not be changed

48 Version 2.1



899

900

901

902

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

3.10 Thread friendliness and thread safety 3 CODING

1

2

from a non-const method without some sort of explicit locking or other
synchronization. It is best avoided in code that should be used with

threading,.

mutable can, however, be used with objects that are explicitly intended to
be accessed from multiple threads. These include mutexes and thread-local
pointers. In some cases, members of atomic type may also be safely made
mutable, but only if they do not need to be updated consistently with
other members.

Do not return non-const member pointers/references from const
methods [mt-const-consistency]

Consider the following fragment:

class C
{
public:

Impl* impl() const { return m_impl; }
private:

Impl* m_impl;
}s

This is perfectly valid according to the C++ const rules. However, it allows
modifying the Imp1 object following a call to the const method imp1 ().
Whether this is actually a problem depends on the context. If m_impl is
pointing at some unrelated object, then this might be OK; however, if it
is pointing at something which should be considered part of C, then this
could be a way around the const guarantees.

To maintain safety, and to make the code easier to reason about, do not
return a non-const pointer (or reference) member from a const member
function.

Be careful returning const references to class members. [mt-const-
references]

Consider the following example:

class C

{

49 Version 2.1



922

923

924

925

926

927

928

929

930

931

3.10

Thread friendliness and thread safety 3 CODING

public:
const std::vector<int>& v() const { return m_v; }
void append (int x) { m_v.push_back (x); }
private:
std: :vector<int> m_v;

}s

int getSize (const C& c)

{

return c.v().size();

int push (C& c)

{
c.append (1);

This is a fairly typical example of a class that has a large object as a member,
with an accessor the returns the member by const reference to avoid having
to do a copy.

But suppose now that one thread calls getSize () while another thread
calls push () at the same time on the same object. It can happen that first
getSize () gets the reference and starts the call to size (). At that point,
the push_back () can run in the other thread. If push_back() runs at
the same time as size (), then the results are unpredictable — the size ()
call could very well return garbage.

Note that it doesn’t help to add locking within the class C:

class C
{
public:
const std::vector<int>& v() const
{
std: :lock_guard<std: :mutex> lock (m_mutex);
return m v;

}
void append (int x)

50 Version 2.1



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

3.10

Thread friendliness and thread safety 3 CODING

std: :lock_guard<std: :mutex> lock (m_mutex);
m_v.push_back (x);
3
private:
mutable std::mutex m_mutex;
std: :vector<int> m_v;

}s

This is because the lock is released once v () returns — and at that point,
the caller can call (const) methods on the vector instance unprotected

by the lock.

Here are a few ways in which this could possibly be solved. Which is
preferable would depend on the full context in which the class is used.

— Change the v () accessor to return the member by value instead of by
reference.

- Remove the v () accessor and instead add the needed operations to
the C class, with appropriate locking. For the above example, we could

add something like:
1 |size_t C::vSize() const
2 | {
3 std: :lock_guard<std: :mutex> lock (m_mutex);
4 return m_v.size();
s

— Change the type of the m_v member to something that is inherently
thread-safe. This could mean replacing it with a wrapper around
std: :vector that does locking internally, or using something like
concurrent vector from TBB.

— Do locking externally to class C. For example, introduce a mutex
that must be acquired in both getSize () and push() in the above
example.

51 Version 2.1



3.11 Formatted output 3 CODING

w 3.11 Formatted output

950 + Prefer std::format to printf or iostream formatting. [use-
951 format]

952 For new code, use the C++20 formatting library to format values to a string
953 rather than using printf-style formatting or using iostream manipula-
954 tors.

955 Example:

1 |#include <format>

3 |const char* typ = "ele"
+ |float energy = 14.2345;
5 |int mask = 323;

7 |std::cout << std::format

8 ("A {1:.2f} Gev {0} mask {2:#06x}.\n",
9 typ, energy, mask);

w |// prints: A 14.23 GeV ele mask 0x0143.

956 Compare using printf-style formatting:

1 |#include "CxxUtils/StrFormat.h"

3 |std::cout << CxxUtils::strformat

4 ("A %.2f GeV %s mask %#06x.\n",
5 energy, typ, mask);
957 or iostream:

1 |#include <iomanip>

s |const int default_precision = std::cout.precision() ;

+ |const std::ios_base::fmtflags default_flags =

5 std::cout.flags();

¢ |const char default_fill = std::cout.fill();

7 |std::cout << "A " << std::fixed << std::setprecision(2
8 << energy << std::defaultfloat

52 Version 2.1



958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

312

Assertions and error conditions 3 CODING

<< std::setprecision(default_precision)

<< " GeV " << typ << " mask "

<< std::hex << "Ox" << std::setfill('0")

<< std::setw(4) << mask

<< std::setfill(default_fill)

<< ".\n";
std::cout.flags(default_flags);

Like the streaming operator, std: : format has a way of customizing how
a given type is formatted. However, it is somewhat more involved than
for operator<<; in addition, std: : format will not use existing custom
streaming operators. Therefore, for generating printable representations
of class instances, it is probably better in most cases to use the iostream
mechanism.

3.12 Assertions and error conditions

+ Pre-conditions and post-conditions should be checked for validity.
[pre-post-conditions]

You should validate your input and output data whenever an invalid input
can cause an invalid output.

« Don’t use assertions in place of exceptions. [assertion-usage]

Assertions should only be used to check for conditions which should be
logically impossible to occur. Do not use them to check for validity of input
data. For such cases, you should raise an exception (or return a Gaudi error
code) instead.

Assertions may be removed from production code, so they should not be
used for any checks which must always be done.

2 3.13 Error handling

977

978

979

980

+ Use the standard error printing facility for informational messages.
Do not use cerr and cout. [no-cerr-cout]

The “standard error printing facility” in Athena/Gaudi is MsgStream. No
production code should use cout. Classes which are not Athena-aware

53 Version 2.1



3.13 Error handling 3 CODING

981 could use cerr before throwing an exception, but all Athena-aware classes
982 should use MSG: : FATAL and/or throw an exception. In addition, it is ac-
983 ceptable to use writes to cout in unit tests.

984 When using MsgStream, note that a call to, eg, msg() <<
985 MSG: : VERBOSE that is suppressed by the output level has a higher
986 runtime cost than a call suppressed by if (msgLvl <= MSG: :VERBOSE).
087 The ATH_MSG macros (ATH_MSG_INFO and ATH_MSG_DEBUG etc) wrap
988 msg () calls in appropriate if statements and are preferred in general
989 for two reasons: they take up less space in the source code and indicate
990 immediately that the message is correctly handled.

991 « Check for all errors reported from functions. [check-return-status]
992 It is important to always check error conditions, regardless of how they are
993 reported.

994 + Use exceptions to report fatal errors from non-Gaudi components.
995 [exceptions]

996 Exceptions in C++ are a means of separating error reporting from error
997 handling. They should be used for reporting errors that the calling code
998 should not be expected to handle. An exception is “thrown” to an error
999 handler, so the treatment becomes non-local.

1000 If you are writing a Gaudi component, or something that returns a Gaudi
1001 StatusCode, then you should usually report an error by posting a message
1002 to the message service and returning a status code of ERROR.

1003 However, if you are writing a non-Gaudi component and you need to report
1004 an error that should stop event processing, you should raise an exception.
1005 If your code is throwing exceptions, it is helpful to define a separate class
1006 for each exception that you throw. That way, it is easy to stop in the
1007 debugger when a particular exception is thrown by putting a breakpoint in
1008 the constructor for that class.

1 |#include <stdexcept>

3 |class ExcMyException
4 : public std::runtime_error

54 Version 2.1



1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

3.13 Error handling 3 CODING
¢ |public:
7
8
9 ExcMyException (const std::string& what)
10 std: :runtime_error ("My exception: " what)

{3
}s

throw MyException ("You screwed up.");

« Do not throw exceptions as a way of reporting uncommon values

from a function. [exception-usage]

If an error can be handled locally, then it should be. Exceptions should
not be used to signal events which can be expected to occur in a regular
program execution. It is up to programmers to decide what it means to be

exceptional in each context.

Take for example the case of a function £ind (). It is quite common that the
object looked for is not found, and it is certainly not a failure; it is therefore
not reasonable in this case to throw an exception. It is clearer if you return

a well-defined value.

+ Do not use exception specifications. [no-exception-specifications]

Exception specifications were a way to declare that a function could throw
one of only a restricted set of exceptions. Or rather, that’s what most people
wanted it to do; what it actually did was require the compiler to check, at
runtime, that a function did not throw any but a restricted set of exceptions.

Experience has shown that exception specifications are generally not useful
and non-empty exception specifications are now an error [15]. They should

not be used in new code, and are not allowed in C++20.

There is also the keyword noexcept. The motivation for this was really to
address a specific problem with move constructors and exception-safety, and
itis not clear that it is generally useful [16]. For now, it is not recommended
to use noexcept, unless you have a specific situation where you know it

55

Version 2.1



1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

3.13 Error handling 3 CODING

1

2

would help.

« Do not catch a broad range of exceptions outside of framework code.
[no-broad-exception-catch]

The C++ exception mechanism allows catching a thrown exception, giving
the program the chance to continue execution from the point where the
exception was caught. This can be used some specific cases where you
know that some specific exception isn’t really a problem. However, you
should catch only the particular exception involved here. If you use an
overly-broad catch specification, you risk hiding other problems. Example:

try {
return getObject ("foo");

// getObject may throw ExcNotFound if the "foo"
// object is not found. In that case we can just
// return 0.
}
catch (ExcNotFound&) {
return 0;

// But one would not want to do this, since that would
// hide other errors:
catch (...) {

return 0;

+ Prefer to catch exceptions as const reference, rather than as value.
[catch-const-reference]

Classes used for exceptions can be polymorphic just like data classes, and
this is in fact the case for the standard C++ exceptions. However, if you
catch an exception and name the base class by value, then the object thrown
is copied to an instance of the base class.

For example, consider this program:

#include <stdexcept>
#include <iostream>

56 Version 2.1



1047

1048

1049

1050

1051

1052

1053

3.13

Error handling 3 CODING

20

21

22

23

24

class myex : public std::exception {
public:
virtual const char* what() const noexcept
{ return "Mine!"; }

}s

void foo()

{

throw myex();

int main()
{
try {
foo();
}
catch (std::exception ex) {
std::cout << "Exception: " << ex.what() << "\n";

}

return 0;

It looks like the intention here is to have a custom message printed when the
exception is caught. But that’s not what happens — this program actually
prints:

Exception: std::exception

That’s because in the catch clause, the myex instance is copied to a
std: :exception instance, so any information about the derived myex
class is lost. If we change the catch to use a reference instead:

catch (const std::exception ex&) {

then the program prints what was probably intended.

Exception: Mine!

57 Version 2.1



1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

3.14 Parts of C++ to avoid 3 CODING

Recent versions of gcc will warn about this.

3.14 Parts of C++ to avoid

Here a set of different items are collected. They highlight parts of the language
which should be avoided, either because there are better ways to achieve the
desired results or because the language features are still immature. In particular,
programmers should avoid using the old standard C functions, where C++ has
introduced new and safer possibilities.

« Do not use C++ modules. [no-modules]

Modules were introduced in C++20 as a better alternative to #include.
If a module is referenced via import, it avoids repeatedly parsing the
code as well as avoiding issues that arise due to interference between
headers. However, building modules requires significant support from the
build system, and the support in compilers and associated tools is still
very immature. Even using the standard library as a module is not fully
functional with C++20.

For now, avoid any use of modules. With C++23, it may be possible to use
standard libraries as modules, but building ATLAS code as modules will
require significant additional development.

« Do not use C++ coroutines. [no-coroutines]

Coroutines allow for a non-linear style of control flow, where one can return
from the middle of a function and then resume execution from that point at
a later time. However, the coroutine interfaces available in C++20 are quite
low-level: they are intended to be used as building blocks for other library
components rather than for direct use by user code. Further, uncontrolled
use of the type of control flow made possible by coroutines has the potential
to be terribly confusing.

For now, avoid use of coroutines. If you have a use case that would greatly
benefit from using coroutines, please consult with software coordination.
This recommendation will be revisited for new versions of C++ which may
include easier mechanisms for using coroutines.

« Do not use malloc, calloc, realloc, and free. Use new and
delete instead. [no-malloc]

58 Version 2.1



1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

3.14 Parts of C++ to avoid 3 CODING

You should avoid all memory-handling functions from the standard C-
library (malloc, calloc, realloc, and free) because they do not call
constructors for new objects or destructors for deleted objects.

Exceptions may include aligned memory allocations, but this should gener-
ally not be done outside of low-level code in core packages.

Do not use functions defined in stdio. Use the iostream func-
tions in their place. [no-stdio]

scanf and printf are not type-safe and they are not extensible. Use
operator>> and operator<< associated with C++ streams instead,
along with std: : format to handle formatting (see use-format, page 52).
iostream and stdio functions should never be mixed.

Example:

// type safety
char* aString("Hello Atlas");
printf("This works: %s \n", aString) ;
cout <<"This also works:'"<<aString<<endl;
char aChar('!"');
printf ("This does not %s \n", aChar);
// and you get a core dump
cout <<"But this is still OK :"<<aChar<<endl;

//extensibility

std::string aCPPString("Hello Atlas");

printf("This does not work: %s \n", aCPPString);
//Core dump again

It is of course acceptable to use stdio functions if you're calling an external
library that requires them.

If youneed to use printf style formatting, see “CxxUtils/StrFormat.h’
However, std: : format is preferred for new code.

« Do not use the ellipsis notation for function arguments. [no-ellipsis]

Prior to C++ 11, functions with an unspecified number of arguments had
to be declared and used in a type-unsafe manner:

59 Version 2.1



3.14 Parts of C++ to avoid 3 CODING

1

:» |void error(int severity, ...)

3

4
1105 This method should be avoided.
1106 As of C++11, one can accomplish something similar using variadic tem-
1107 plates:

1 |template<typename ...ARGS>

: |void error(int severity, ARGS...)
1108 This is fine, but should be used judiciously. It’s appropriate for forwarding
1109 arguments through a template function. For other cases, it’s worth thinking
1110 if there might be a simpler way of doing things.
1 An ellipsis can also occur in a catch clause to catch any exception:
12 catch(...). This is acceptable, but should generally be restricted to
1113 framework-like code.
1 « Do not use preprocessor macros to take the place of functions, or
1115 for defining constants. [no-macro-functions]
116 Use templates or inline functions rather than the pre-processor macros.

2 |#define SQUARE(X) X*X

5 |inline int square(int x) {

6 return x*Xx;

7|}
7 « Do not declare related numerical values as const. Use enum decla-
118 rations. [use-enum)]
1o The enum construct allows a new type to be defined and hides the numerical
120 values of the enumeration constants.

60 Version 2.1



3.14 Parts of C++ to avoid 3 CODING

1 |enum State {halted, starting, running, paused};

121 « Do not use NULL to indicate a null pointer; use the nullptr key-
122 word instead. [nullptr]

12 Older code often used the constant 0. NULL is appropriate for C, but not
1124 C++.

1125 « Donotuse const char* orbuilt-in arrays “[]”; use std: :string
1126 instead. [use-std-string]

127 One thing to be aware of, though. C++ will implicitly convert a const
1128 char+* to a std: : string; however, this may add significant overhead if
1129 used in a loop. For example:

1 |void do_something (const std::string& s);

3 |for (int i=0; i < lots; i++) {

5 do_something ("hi there!");

1130 Each time through the loop, this will make a new std: : string copy of
13 the literal. Better to move the conversion to std: : string outside of the
1132 IOOpZ

1 |std::string myarg = "hi there!";

: |for (int i=0; i < lots; i++) {

4 do_something (myarg);

13 « Avoid using union types. [avoid-union-types]

1134 Unions can be an indication of a non-object-oriented design that is hard to
135 extend. The usual alternative to unions is inheritance and dynamic binding.
1136 The advantage of having a derived class representing each type of value
137 stored is that the set of derived class can be extended without rewriting any
1138 code. Because code with unions is only slightly more efficient, but much
139 more difficult to maintain, you should avoid it.

1140 Unions may be used in some low-level code and in places where efficiency

61 Version 2.1



3.14 Parts of C++ to avoid 3 CODING

1141 is particularly important. Unions may also be used in low-level code to
1142 avoid pointer aliasing (see no-reinterpret-cast, page 28).

1143 + Avoid using bit fields. [avoid-bitfields]

1144 Bit fields are a feature that C++ inherited from C that allow one to specify
1145 that a member variable should occupy only a specified number of bits, and
1146 that it can be packed together with other such members.

1 |class C

2 | {

s |public:

4 unsigned int a : 2;

5 unsigned int b : 3;

o |}
147 It may be tempting to use bit fields to save space in data written to disk, or
1148 in packing and unpacking raw data. However, this usage is not portable.
1149 The C++ standard has this to say:
1150 Allocation of bit-fields within a class object is implementation-
151 defined. Alignment of bit-fields is implementation-defined. Bit-
1152 fields are packed into some addressable allocation unit. [ Note:
1153 Bit-fields straddle allocation units on some machines and not on
1154 others. Bit-fields are assigned right-to-left on some machines,
1155 left-to-right on others. — end note ]
156 Besides portability issues, there are other other potential issues with bit
1157 fields that could be confusing: bit fields look like class members but obey
158 subtly different rules. For example, one cannot form a reference to a bit
1159 field or take its address. There is also an issue of data races when writing
1160 multithreaded code. It is safe to access two ordinary class members simul-
61 taneously from different threads, but not two adjacent bit fields. (Though
1162 it is safe to access simultaneously two bit field members separated by an
1163 ordinary member. This leads to be possibility that thread-safety of bit field
1164 access could be compromised by the removal of an unrelated member.)
1165 Access to bit fields also incurs a CPU penalty.
1166 In light of this, it is best to avoid bit fields in most cases. Exceptions would
1167 be cases where saving memory is very important and the internal structure

62 Version 2.1



3.14 Parts of C++ to avoid 3 CODING

1168 of the class is not exposed.

169 For some cases, std: :bitset can be a useful, portable replacement for
1170 blt ﬁelds.

17 « Do not use asm (the assembler macro facility of C++). [no-asm]

e Many special-purpose instructions are available through the use of compiler
"7 intrinsic functions. For those rare use cases where an asm might be needed,
17 the use of the asm should be encapsulated and made available in a low-level
17s package (such as CxxUtils).

1176 « Do not use the keyword struct for types used as classes. [no-struct]
177 The class keyword is identical to struct except that by default its con-
178 tents are private rather than public. struct may be allowed for writing
1179 non-object-oriented PODs (plain old data, i.e. C structs) on purpose. It is a
1180 good indication that the code is on purpose not object-oriented.

1181 « Do not use static objects at file scope. Use an anonymous namespace
1182 instead. [anonymous-not-static]

1183 The use of static to signify that something is private to a source file is
1184 obsolete; further it cannot be used for types. Use an anonymous namespace
1185 instead.

1186 For entities which are not public but are also not really part of a class, prefer
1187 putting them in an anonymous namespace to putting them in a class. That
1188 way, they won’t clutter up the header file.

1189 « Do not declare your own alias for booleans. Use the bool type of
1190 C++ for booleans. [use-bool]

1191 The bool type was not implemented in C. Programmers usually got around
1192 the problem by typedefs and/or const declarations. This is no longer needed,
1193 and must not be used in ATLAS code.

1194 « Avoid pointer arithmetic. [no-pointer-arithmetic]

1195 Pointer arithmetic reduces readability, and is extremely error prone. It
1196 should be avoid outside of low-level code.

1197 « Do not declare variables with register. [no-register]

63 Version 2.1



3.15 Readability and maintainability 3 CODING

1198 The register keyword was originally intended as a hint to the compiler
1199 that a variable will be used frequently, and therefore it would be good to
1200 assign a dedicated register to that variable. However, compilers have long
1201 been able to do a good job of assigning values to registers; this is anyway
1202 highly-machine dependent.

1203 Use of the register keyword now an error.

w 3.15 Readability and maintainability

1205 + Code should compile with no warnings. [no-warnings]

1206 Many compiler warnings can indicate potentially serious problems with
1207 your code. But even if a particular warning is benign, it should be fixed, if
1208 only to prevent other people from having to spend time examining it in the
1209 future.

1210 Warnings coming from external libraries should be reported to whomever is
121 maintaining the ATLAS wrapper package for the library. Even if the library
1212 itself can’t reasonably be fixed, it may be possible to put a workaround in
1213 the wrapper package to suppress the warning.

1214 See [17] for help on how to get rid of many common types of warning. If it
1215 is really impossible to get rid of a warning, that fact should be documented
1216 in the code.

1217 « Keep functions short. [short-functions]

1218 Short functions are easier to read and reason about. Ideally, a single function
1219 should not be bigger than can fit on one screen (i.e., not more than 30-40
1220 lines).

1221 « Avoid excessive nesting of indentation. [excessive-nesting]

122 It becomes difficult to follow the control flow in a function when it becomes
1223 deeply nested. If you have more than 4-5 indentation levels, consider
1224 splitting off some of the inner code into a separate function.

1225 + Avoid duplicated code. [avoid-duplicate]

1226 This statement has a twofold meaning.

64 Version 2.1



3.15 Readability and maintainability 3 CODING

1227 The first and most evident is that one must avoid simply cutting and pasting
1228 pieces of code. When similar functionalities are necessary in different
1229 places, they should be collected in methods, and reused.

1230 The second meaning is at the design level, and is the concept of code reuse.
1231 Reuse of code has the benefit of making a program easier to understand
1232 and to maintain. An additional benefit is better quality because code that is
1233 reused gets tested much better.

1234 Code reuse, however, is not the end-all goal, and in particular, it is less
1235 important than encapsulation. One should not use inheritance to reuse a
1236 bit of code from another class.

1237 « Document in the code any cases where clarity has been sacrificed
1238 for performance. [document-changes-for-performance]

1239 Optimize code only when you know you have a performance problem. This
1240 means that during the implementation phase you should write code that is
1241 easy to read, understand, and maintain. Do not write cryptic code, just to
1242 improve its performance.

1243 Very often bad performance is due to bad design. Unnecessary copying of
1244 objects, creation of large numbers of temporary objects, improper inheri-
1245 tance, and a poor choice of algorithms, for example, can be rather costly
1246 and are best addressed at the architecture and design level.

1247 + Avoid creating type aliases for classes. [avoid-typedef]

1248 Type aliases (typedefs) are a serious impediment in large systems. While
1249 they simplify code for the original author, a system filled with aliases can
1250 be difficult to understand. If the reader encounters a class A, he or she can
1251 find an #include with “A.h” in it to locate a description of A; but aliases
1252 carry no context that tell a reader where to find a definition. Moreover,
1253 most of the generic characteristics obtained with aliases are better handled
1254 by object oriented techniques, like polymorphism.

1255 Aliases are acceptable where they provide part of the expected interface for
1256 a class, for example value_type, etc. in classes used with STL algorithms.
1257 They are often indispensable in template programming and metaprogram-
1258 ming, and are also part of how xAOD classes and POOL converters are
1259 typically defined.

65 Version 2.1



3.16 Portability 3 CODING

1260 In other contexts, they should be used with care, and should generally be
1261 accompanied with a comment giving the rationale for the alias.

1262 Aliases may be used as a “customization point;” that is, to allow the pos-
1263 sibility of changing a type in the future. For example, the auxiliary store
1264 code uses integers to identify particular auxiliary data items. But rather
1265 than declaring these as an integer type directly, an alias auxid_t is used.
1266 This allows for the possibility of changing the type in the future without
1267 having to make changes throughout the code base. It also makes explicit
1268 that variables of that type are meant to identify auxiliary data items, rather
1269 than being random integers.

1270 An alias may also be used inside a function body to shorten a cumbersome
127 type name; however, this should be used sparingly.

1272 « Code should use the standard ATLAS units for time, distance, energy,
1273 etc. [atlas-units]

1274 As a reminder, energies are represented as MeV and lengths as mm. Please
1275 use the symbols defined in GaudiKernel/SystemOfUnits.h.

1 |#include "GaudiKernel/SystemOfUnits.h"

3 |float pt_thresh = 20 * Gaudi::Units::GeV;
« |float ip_cut = 0.1 * Gaudi::Units::cm;

e 3.16 Portability

1277 + All code must comply with the 2020 version of the ISO C++ standard
1278 (C++20). [standard-cxx]

1279 A draft of the standard which is essentially identical to the final version may
1280 be found at [4]. However, the standards documents are not very readable.
1281 A better reference for most questions about what is in the standard is the
1282 cppreference.com website [5].

1283 At some point, compatibility with C++23 will also be required.

1284 « Make non-portable code easy to find and replace. [limit-non-portable-
1285 code]

66 Version 2.1



3.16 Portability 3 CODING

1286 Non-portable code should preferably be factored out into a low-level pack-
1287 age in Control, such as CxxUtils. If that is not possible, an #ifdef may
1288 be used.

128 However, #ifdefs can make a program completely unreadable. In addition,
1290 if the problems being solved by the #ifdef are not solved centrally by the
1291 release tool, then you resolve the problem over and over. Therefore. the
1292 using of #ifdef should be limited.

1293 « Headers supplied by the implementation (system or standard li-
1294 braries header files) must go in <> brackets; all other headers must
1295 go in "" quotes. [system-headers]

1 | // Include only standard header with <>
2 |#include <jiostream> // OK: standard header
3 |#include <MyFyle.hh> // NO: nonstandard header

s |// Include any header with ""
¢ |#include "stdlib.h" // NO: better to use <>
7 |#include "MyPackage/MyFyle.h" // OK

1296 « Do not specify absolute directory names in include directives. In-
1297 stead, specify only the terminal package name and the file name.
1208 [include-path]

1299 Absolute paths are specific to a particular machine and will likely fail
1300 elsewhere.

1301 The ATLAS convention is to include the package name followed by the file
1302 name. Watch out: listing the package name twice is wrong, but some build
1303 systems don’t catch it.

1 |#include "/atlas/sw/dist/1.2/Foo/Bar/Qux.h"
2 // Wrong

3 |#include "Foo/Bar/Qux.h" // Wrong

« |#include "Bar/Bar/Qux.h" // Wrong

s |#include "Bar/Qux.h" // Right
1304 « Always treat include file names as case-sensitive. [include-case-
1305 sensitive]

67 Version 2.1



3.16 Portability 3 CODING

1306 Some operating systems, e.g. Windows NT, do not have case-sensitive
1307 file names. You should always include a file as if it were case-sensitive.
1308 Otherwise your code could be difficult to port to an environment with
1309 case-sensitive file names.

3 |#include <Iostream>

4+ |#include <iostream>

1310 + Do not make assumptions about the size or layout in memory of an
131 object. [no-memory-layout-assumptions]

1312 The sizes of built-in types are different in different environment. For ex-
1313 ample, an int may be 16, 32, or even 64 bits long. The layout of objects is
1314 also different in different environments, so it is unwise to make any kind of
1315 assumption about the layout in memory of objects.

1316 If you need integers of a specific size, you can use the definitions from
1317 <cstdints>:

1 #include <cstdint>

3 |intl6_t a;
4 uint8 t b;
s |int_fast_16_t c;

1318 The C++ standard requires that class members declared with no intervening
1319 access control keywords (public, protected, private) be laid out in
1320 memory in the order in which they are declared in the class. However, if
1321 there is an access control keyword between two member declarations, their
1322 relative ordering in memory is unspecified. In any case, the compiler is free
1323 to insert arbitrary padding between members.

1324 » Take machine precision into account in your conditional statements.
1925 Do not compare floats or doubles for equality. [float-precision]

1326 Have a look at the std: :numeric_limits<T> class, and make sure your
1327 code is not platform-dependent. In particular, take care when testing float-
1928 ing point values for equality. For example, it is better to use:

68 Version 2.1



3.16 Portability 3 CODING

1 |const double tolerance = 0.001;

5 |#include <cmath>

7 |1f (std::abs(valuel - value2) < tolerance )

1329 than

1 |if ( valuel == value2 )
1330 Also be aware that on 32-bit platforms, the result of inequality operations
19 can change depending on compiler optimizations if the two values are very
1392 close. This can lead to problems if an STL sorting operation is based on this.
1333 A fix is to use the operations defined in CxxUtils/fpcompare.h.
1334 « Do not depend on the order of evaluation of arguments to a function;
1335 in particular, never use the increment and decrement operators in
1336 function call arguments. [order-of-evaluation]
1337 The order of evaluation of function arguments is not specified by the
1338 C++ standard, so the result of an expression like foo(a++, vec(a))
1339 is platform-dependent.

v |func(f1(), f2(0), £30));

1340 Beware in particular if you’re using random numbers. The result of some-
1341 thll’lg like

1 |atan2 (static_cast<double>(rand()),

2 static_cast<double>(rand()));
1302 can change depending on how it’s compiled.
1343 « Do not use system calls if there is another possibility (e.g. the C++
1344 run time library). [avoid-system-calls]

69 Version 2.1



1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

4 STYLE

4

For example, do not forget about non-Unix platforms.
+ Prefer int /unsigned int and double types. [preferred-types]

The default type used for an integer value should be either int orunsigned
int. Use other integer types (short, long, etc.) only if they are actually
needed.

For floating-point values, prefer using double, unless there is a need to save
space and the additional precision of a double vs. float is not important.

« Do not call any code that is not in the release or is not in the list of
allowed external software. [no-new-externals]

Style

This section concerns the style, as opposed to the functionality, of the code.

= 4.1 General aspects of style

1357

1358

1359

1360

1361

1362

« The public,protected,and private sections of a class must be
declared in that order. Within each section, nested types (e.g. enum
or class) must appear at the top. [class-section-ordering]

The public part should be most interesting to the user of the class, and
should therefore come first. The private part should be of no interest to the
user and should therefore be listed last in the class declaration.

class Path

{

public:
Path();
~Path() ;

protected:
void draw();

private:
class Internal {

70 Version 2.1



4.1 General aspects of style 4 STYLE

13 s

|}
1363 + Keep the ordering of methods in the header file and in the source
1364 files identical. [method-ordering]
1365 This makes it easier to go back and forth between the declarations and the
1366 definitions.
1367 « Statements should not exceed 100 characters (excluding leading
1368 spaces). If possible, break long statements up into multiple ones.
1369 [long-statements]
1370 « Limit line length to 120 character positions (including white space
1 and expanded tabs). [long-lines]
1972 + Include meaningful dummy argument names in function declara-
1973 tions. Any dummy argument names used in function declarations
1974 must be the same as in the definition. [dummy-argument-names]
1975 Although they are not compulsory, dummy arguments make the class
1976 interface much easier to read and understand.
1377 For example, the constructor below takes two Number arguments, but what
1378 are they?

1 |class Point

2 | {

3 |public:

4 Point (Number, Number) ;

s
1379 The following is clearer because the meaning of the parameters is given
1380 explicitly.

1 |class Point

2 | {

3 |public:

4 Point (Number x, Number y);

s )

71 Version 2.1



4.1 General aspects of style 4 STYLE

1381 « The code should be properly indented for readability reasons.
1382 [indenting]
1383 The amount of indentation is hard to regulate. If a recommendation were
1384 to be given then two to four spaces seem reasonable since it guides the eye
1385 well, without running out of space in a line too soon. The important thing
1386 is that if one is modifying someone else’s code, the indentation style of the
1387 original code should be adopted.
1388 It is strongly recommended to use an editor that automatically indents code
1389 for you.
1390 Whatever style is used, if the structure of a function is not immediately
1391 visually apparent, that should be a cue that that function is too complicated
1392 and should probably broken up into smaller functions.
1393 « Do not use spaces in front of [] and to either side of . and ->.
1394 [spaces]

1 |a->foo()

2 x[1]

5 |b . bar()

1295 Spacing in function calls is more a matter of taste. Several styles can be
139 distinguished. First, not using spaces around the parentheses (K&R, Linux
1397 kernel):

1 | foo()

2 |foo(1)

s |foo(1l, 2, 3)

1398 Second, always putting a space before the opening parenthesis (GNU):

1 | foo ()
2 |foo (1)
s |foo (1, 2, 3)

1399 Third, putting a space before the opening parenthesis unless there are no
1400 arguments.
1 |foo()

72 Version 2.1



1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

4.2 Comments 4 STYLE

3

4.2

foo (1)
foo (1, 2, 3)

Fourth, putting spaces around the argument list:

foo()
foo( 1 )
foo( 1, 2, 3 )

In any case, if there are multiple arguments, they should have a space
between them, as above. A parenthesis following a C++ control keyword
with as if, for, while, and switch should always have a space before it.

Keep the style of each file consistent within itself. [style-consistency]

Although standard appearance among ATLAS source files is desirable, when
you modify a file, code in the style that already exists in that file. This means,
leave things as you find them. Do not take a non-compliant file and adjust a
portion of it that you work on. Either fix the whole thing, or code to match.

Prefer using to typedef. [prefer-using]

To declare a type alias, prefer the newer using syntax:

using Int_t = int;

to the typedef syntax:

typedef int Int_t;

The using syntax makes it clearer what is being defined; it can also be
used to declare templated aliases.

Comments

Use Doxygen style comments before class/method/data member
declarations. Use “//” for comments in method bodies. [doxygen-
comments]

ATLAS has adopted the Doxygen code documentation tool, which requires
a specific format for comments. Doxygen comments either be in a block

73 Version 2.1



4.2 Comments 4 STYLE

1421

1422

1423

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

delimited by /** */ or in lines starting with ///. We recommend using
the first form for files, classes, and functions/methods, and the second for
data members.

J &%

* @file MyPackage/MyClusterer.h
* @author J. R. Programmer

* @date April 2014

@brief Tool to cluster particles.

*/

%

#ifndef MYPACKAGE_MYCLUSTERER_H
#define MYPACKAGE_MYCLUSTERER_H

#include "MyPackage/ClusterContainer.h"
#include "xAODBase/IParticleContainer.h"
#include "AthenaBaseComps/AthAlgTool.h"

namespace MyStuff {

VA Z]
* @brief Tool to cluster particles.
*

*# This tool forms clusters using the method
* described in

*/

class MyClusterer

{
public:

J & *
* @brief Cluster particles.
* @param particles List of particles to cluster.

* @param[out] clusters Resulting cluster 1list.

74 Version 2.1



1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

4.2 Comments 4 STYLE

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

1

StatusCode
cluster (const xAOD::IParticleContainer& particles,
ClusterContainer& clusters) const;

private:

float m_clusterSize;

#endif

See the ATLAS Doxygen page [18].

Remember that the /* */ style of comment does not nest. If you want to
comment out a block of code, using #if 0/ #endif is safer than using
comments.

All comments should be written in complete (short and expressive)
English sentences. [english-comments]

The quality of the comments is an important factor for the understanding
of the code. Please do fix typos, misspellings, grammar errors, and the like
in comments when you see them.

In the header file, provide a comment describing the use of a declared
function and attributes, if this is not completely obvious from its
name. [comment-functions]

‘ class Point

75 Version 2.1



1436

1437

1438

1439

1440

144

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

5 CHANGES

2 | {

3 |public:

4

5

6

7

8 Number distance (Line 1);
o |}

The comment includes the fact that it is the perpendicular distance.

5 Changes

5.1 Version 2.1 (Jan 1, 2026)

« Migrated source to pandoc-markdown. Produce mkdocs-compatible output.
Minor edits.

5.2 Version 2.0 (March 6, 2024)
« Updated for C++20.

Don’t use modules or coroutines.

Add recommendation to use <numberss.

Suggest using auto to move the return type to the end of a method
signature when returning types defined within the class.

Suggest not defining template functions without the template key-
word.

Recommend std: : format for formatted output.

Note that range-for can have init-statements.

Mention std: :bit_cast.

Recommend using instead of typedef. Rephrase previous refer-
ences to typedef.

Comparisons should be defined in terms of operator== and
operator<=>.

Mention std: : span.

« Some additional references.
+ Clarify that non-ASCII characters should not be used in identifier names.

76 Version 2.1



1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

147

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

5.3 Version 0.7 (Sep 18, 2019) 5 CHANGES

5.3

54

5.5

5.6

5.7

Clarify that variable-length argument lists of variadic template functions
are OK.

Version 0.7 (Sep 18, 2019)

Minor cleanups and updates to take into account that we now require
C++17.

Use the fallthrough attribute, not a comment.

Allow omitting the default clause in a switch statement on an enum
that handles all possible values. Recent compilers will warn if some values
are not handled, and it’s better to get such a diagnostic at compile-time
rather than at runtime.

Clarify avoid-typedef section.

Mention preference for ATH_MSG_ macros.

Don’t require override for destructors.

Avoid using #pragma once.

Version 0.6 (Dec 20, 2017)

The register keyword is an error in C++17.

Dynamic exception specifications are errors in C++17.
Exceptions should be caught using const references, not by value.
Discourage using protected data.

Version 0.5 (Nov 21, 2017)

Add an initial set of guidelines for AthenaMT.
Add recommendation to prefer range-based for.

Version 0.4 (Nov 16, 2017)

Minor updates: we're now using c++14. Add note about implicit fallthrough
warnings with gcc7. Add rule to use std::abs().

Version 0.3 (Aug 23, 2017)

Add recommendation to avoid bit fields.

77 Version 2.1



1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

5.8 Version 0.2 (Aug 9, 2017) 5 CHANGES

5.8 Version 0.2 (Aug 9, 2017)

« Small typo fixes.

« Add a brief description of pointer aliasing.

« Add more details about argument passing to functions.
+ Add recommendation on auto.

References

[1] D. Knuth, Literate programming, The Computer Journal 27, 97 (1984).

[2] ATLAS Quality Control Group, ATLAS C++ Coding Standard, ATL-SOFT-
2002-001, 2001.

(3] CERN Project Support Team, C++ Coding Standard, CERN-UCO0/1999/207,
2000.

(4] Standard for the Programming Language C++, n4868, 2020.

[5] C++ reference, (n.d.).

(6] News, Status & Discussion about Standard C++, (n.d.).

(7] C++ Stories, (n.d.).

[8] R. Grimm, Modernes C++, (n.d.).

(9] H. Sutter, Guru of the week archive, (2008).

[10] H. Sutter, Guru of the week archive, (2013).

[11]  S. Meyers, Effective C++, 3rd Edition (Addison-Wesley, 2005).

[12]  S. Meyers, Effective STL (Addison-Wesley, 2001).

[13] E.Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Elements

of Reusable Object-Oriented Software (Addison-Wesley, 1994).

[14] E. Niebler, Range library for C++, (n.d.).

[15] H. Sutter, A Pragmatic Look at Exception Specifications, C++ Users Journal
20, (2002).

[16] A.Krzemienski, noexcept — what for?, (2014).

[17] FaqCompileTimeWarnings ATLAS wiki page, (n.d.).

(18] DoxygenDocumentation ATLAS wiki page, (n.d.).

78 Version 2.1


http://www.literateprogramming.com/knuthweb.pdf
https://cds.cern.ch/record/685315
https://github.com/cplusplus/draft/releases/download/n4868/n4868.pdf
https://cppreference.com
https://isocpp.org
https://www.cppstories.com
https://modernescpp.com
http://www.gotw.ca/gotw
https://herbsutter.com/gotw
https://github.com/ericniebler/range-v3
http://www.gotw.ca/publications/mill22.htm
http://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/FaqCompileTimeWarnings
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/DoxygenDocumentation

	Introduction
	Naming
	Naming of files
	Meaningful names
	Required naming conventions:
	Recommended naming conventions

	Coding
	Organizing the code
	Control flow
	Object life cycle
	Initialization of variables and constants
	Constructor initializer lists
	Copying of objects

	Conversions
	The class interface
	Inline functions
	Argument passing and return values
	const correctness
	Overloading and default arguments
	Comparisons

	new and delete
	Static and global objects
	Object-oriented programming
	Notes on the use of library functions.
	Thread friendliness and thread safety
	Formatted output
	Assertions and error conditions
	Error handling
	Parts of C++ to avoid
	Readability and maintainability
	Portability

	Style
	General aspects of style
	Comments

	Changes
	Version 2.1 (Jan 1, 2026)
	Version 2.0 (March 6, 2024)
	Version 0.7 (Sep 18, 2019)
	Version 0.6 (Dec 20, 2017)
	Version 0.5 (Nov 21, 2017)
	Version 0.4 (Nov 16, 2017)
	Version 0.3 (Aug 23, 2017)
	Version 0.2 (Aug 9, 2017)

	References

