
ATLAS C++ coding guidelines∗1

Version 2.12

Scott Snyder (BNL) Shaun Roe (CERN)3

and the former ATLAS Quality Control group4

January 1, 20265

Table of Contents6

1 Introduction 37

2 Naming 38

2.1 Naming of files . 39

2.2 Meaningful names . 410

2.3 Required naming conventions: 411

2.4 Recommended naming conventions 512

3 Coding 813

3.1 Organizing the code . 814

3.2 Control flow . 1215

3.3 Object life cycle . 1416

3.3.1 Initialization of variables and constants 1417

3.3.2 Constructor initializer lists 2018

3.3.3 Copying of objects . 2219

∗Correspondence to snyder@bnl.gov.
Generated from https://gitlab.cern.ch/ssnyder/coding-rules/-/blob/master/rules.md by pandoc
version 3.1.11.1 on January 9, 2026
The current version of this document is avalailable at https://atlassoftwaredocs.web.cern.ch/
coding-guidelines.

1

https://atlassoftwaredocs.web.cern.ch/coding-guidelines
https://atlassoftwaredocs.web.cern.ch/coding-guidelines

1 INTRODUCTION

3.4 Conversions . 2720

3.5 The class interface . 3021

3.5.1 Inline functions . 3022

3.5.2 Argument passing and return values 3023

3.5.3 const correctness . 3524

3.5.4 Overloading and default arguments 3625

3.5.5 Comparisons . 3726

3.6 new and delete . 3827

3.7 Static and global objects . 4028

3.8 Object-oriented programming 4129

3.9 Notes on the use of library functions. 4430

3.10 Thread friendliness and thread safety 4631

3.11 Formatted output . 5232

3.12 Assertions and error conditions 5333

3.13 Error handling . 5334

3.14 Parts of C++ to avoid . 5835

3.15 Readability and maintainability 6436

3.16 Portability . 6637

4 Style 7038

4.1 General aspects of style . 7039

4.2 Comments . 7340

5 Changes 7641

5.1 Version 2.1 (Jan 1, 2026) . 7642

5.2 Version 2.0 (March 6, 2024) . 7643

5.3 Version 0.7 (Sep 18, 2019) . 7744

5.4 Version 0.6 (Dec 20, 2017) . 7745

5.5 Version 0.5 (Nov 21, 2017) . 7746

5.6 Version 0.4 (Nov 16, 2017) . 7747

5.7 Version 0.3 (Aug 23, 2017) . 7748

5.8 Version 0.2 (Aug 9, 2017) . 7849

References 7850

2 Version 2.1

2 NAMING

1 Introduction51

This note gives a set of guidelines and recommendations for coding in C++ for52

the ATLAS experiment.53

There are several reasons for maintaining and following a set of programming54

guidelines. First, by following some rules, one can avoid some common errors55

and pitfalls in C++ programming, and thus have more reliable code. But even56

more important: a computer program should not only tell the machine what to57

do, but it should also tell other people what you want the machine to do. (For58

much more elaboration on this idea, look up references on “literate programming,”59

such as [1].) This is obviously important any time when you have many people60

working on a given piece of software, and such considerations would naturally61

lead to code that is easy to read and understand. Think of writing ATLAS code as62

another form of publication, and take the same care as you would writing up an63

analysis for colleagues.64

This document is derived from the original ATLAS C++ coding standard, ATL-65

SOFT-2002-001 [2], which was last revised in 2003. This itself derived from work66

done by the CERN “Project support team” and SPIDER project, as documented67

in CERN-UCO/1999/207 [3]. These previous guidelines have been significantly68

revised to take into account the evolution of the C++ language [4], current69

practices in ATLAS, and the experience gained over the past decade.70

Some additional useful information on C++ programming may be found in the71

references [5–13].72

This note is not intended to be a fixed set of rigid rules. Rather, it should evolve73

as experience warrants.74

2 Naming75

This section contains guidelines on how to name objects in a program.76

2.1 Naming of files77

• Each class should have one header file, ending with “.h”, and one78

implementation file, ending with “.cxx”. [source-naming]79

3 Version 2.1

https://cds.cern.ch/record/685315
https://cds.cern.ch/record/685315
https://cds.cern.ch/record/685315

2.2 Meaningful names 2 NAMING

Some exceptions: Small classes used as helpers for another class should gen-80

erally not go in their own file, but should instead be placed with the larger81

class. Sometimes several very closely related classes may be grouped to-82

gether in a single file; in that case, the files should be named after whichever83

is the “primary” class. A number of related small helper classes (not associ-84

ated with a particular larger class) may be grouped together in a single file,85

which should be given a descriptive name. An example of the latter could86

be a set of classes used as exceptions for a package.87

For classes in a namespace, the namespace should not be included in the file88

name. For example, the header for Trk::Track should be called Track.h.89

Implementation (“.cxx”) files that would be empty may be omitted.90

The use of the “.h” suffix for headers is long-standing ATLAS practice;91

however, it is unfortunate since language-sensitive editors may then default92

to using “C” rather than “C++” mode for these files. For Emacs, it can help93

to put a line like this at the start of the file:94

1 // This file is really -*- C++ -*-.

2.2 Meaningful names95

• Choose names based on pronounceable English words, common96

abbreviations, or acronyms widely used in the experiment, except97

for loop iteration variables. [use-meaningful-names]98

For example, nameLength is better than nLn.99

Use names that are English and self-descriptive. Abbreviations and/or100

acronyms used should be of common use within the community.101

• Do not create very similar names. [no-similar-names]102

In particular, avoid names that differ only in case. For example, track /103

Track; c1 / cl; XO / X0.104

2.3 Required naming conventions:105

Generally speaking, you should try to match the conventions used by whatever106

package you’re working on. But please try to always follow these rules:107

4 Version 2.1

2.4 Recommended naming conventions 2 NAMING

• Use only ASCII characters in identifier names [ascii-identifiers]108

This is what C++ calls the basic character set. Specifically, identifiers should109

use only the characters a-z, A-Z, 0-9, and underscore.110

Handling of non-ASCII characters is implementation-defined. While many111

compilers can indeed handle extended (unicode) characters, not all tools112

may process them correctly. Some characters may not display correctly,113

depending on a user’s local installation. Further, it is often not obvious how114

to type an arbitrary unicode character that one sees displayed, especially115

since there exist distinct characters that look very similar or identical.116

• Use prefix m_ for private/protected data members of classes. [data-117

member-naming]118

Use a lowercase letter after the prefix m_.119

An exception for this is xAOD data classes, where the member names are120

exposed via ROOT for analysis.121

• Do not start any other names with m_. [m-prefix-reserved]122

• Do not start names with an underscore. Do not use names that123

contain anywhere a double underscore. [system-reserved-names]124

Such names are reserved for the use of the compiler and system libraries.125

The precise rule is that names that contain a double underscore or which126

start with an underscore followed by an uppercase letter are reserved127

anywhere, and all other names starting with an underscore are reserved in128

the global namespace. However, it’s good practice to just avoid all names129

starting with an underscore. An exception is the use of a single underscore130

to indicate something that’s structurally required but ignored.131

2.4 Recommended naming conventions132

If there is no already-established naming convention for the package you’re work-133

ing on, the following guidelines are recommended as being generally consistent134

with ATLAS usage.135

• Use prefix s_ for private/protected static data members of classes.136

[static-members]137

5 Version 2.1

2.4 Recommended naming conventions 2 NAMING

Use a lowercase letter after the prefix s_.138

• The choice of namespace names should be agreed to by the commu-139

nities concerned. [namespace-naming]140

Don’t proliferate namespaces. If the community developing the code has a141

namespace defined already, use it rather than defining a new one. Examples142

include Trk:: for tracking and InDet:: for inner detector.143

• Use namespaces to avoid name conflicts between classes. [use-144

namespaces]145

A name clash occurs when a name is defined in more than one place. For146

example, two different class libraries could give two different classes the147

same name. If you try to use many class libraries at the same time, there148

is a fair chance that you will be unable to compile and link the program149

because of name clashes. To solve the problem you can use a namespace.150

New code should preferably be put in a namespace, unless typical ATLAS151

usage is otherwise. For example, ATLAS classes related to the calorimeter152

conventionally start with “Calo” rather than being in a C++ namespace.153

• Start class and enumeration types with an uppercase letter. [class-154

naming]155

1 class Track;
2 enum State { green, yellow, red };

• Type alias (typedef) names should start with an uppercase letter156

if they are public and treated as classes. [typedef-naming]157

1 using TrackVector =
2 std::vector<MCParticleKinematics*>;

• Alternatively, a type alias (typedef) name may start with a lower-158

case letter and end with _t. [typedef-naming-2]159

This form should be reserved for type names which are not treated as classes160

(e.g., a name for a fundamental type) or names which are private to a class.161

1 using mycounter_t = unsigned int;

6 Version 2.1

2.4 Recommended naming conventions 2 NAMING

• Start names of variables, members, and functions with a lowercase162

letter. [variable-and-function-naming]163

1 double energy;
2 void extrapolate();

Names starting with s_ and m_ should have a lowercase letter following164

the underscore.165

Exceptions may be made for the case where the name is following standard166

physics or mathematical notation that would require an uppercase letter;167

for example, uppercase E for energy.168

• In names that consist of more than one word, write the words to-169

gether, and start each word that follows the first one with an upper-170

case letter. [compound-names]171

1 class OuterTrackerDigit;
2 double depositedEnergy;
3 void findTrack();

Some ATLAS packages also use the convention that names are entirely low-172

ercase and separated by underscores. When modifying an existing package,173

you should try to be consistent with the existing naming convention.174

• All package names in the release must be unique, independent of175

the package’s location in the hierarchy. [unique-package-names]176

If there is a package, say “A/B/C”, already existing, another package may177

not have the name “D/E/C” because that “C” has already been used. This is178

required for proper functioning of the build system.179

• Underscores should be avoided in package names. [no-underscores-180

in-package-names]181

The old ATLAS rule was that a _ should be used in package names when they182

are composites of one or more acronyms, e.g. TRT_Tracker, AtlasDB_*.183

Underscores should be avoided unless they really help with readability and184

help in avoiding spelling mistakes. TRTTracker looks odd because of the185

double “T”. Using underscores in package names will also add to confusion186

in the multiple-inclusion protection lines.187

7 Version 2.1

3 CODING

• Acronyms should be written as all uppercase. [uppercase-acronyms]188

1 METReconstruction, not MetReconstruction
2 MuonCSCValidation, not MuonCscValidation

Unfortunately, existing code widely uses both forms.189

3 Coding190

This section contains a set of items regarding the “content” of the code. Orga-191

nization of the code, control flow, object life cycle, conversions, object-oriented192

programming, error handling, parts of C++ to avoid, portability, are all examples193

of issues that are covered here.194

The purpose of the following items is to highlight some useful ways to exploit the195

features of the programming language, and to identify some common or potential196

errors to avoid.197

3.1 Organizing the code198

• Header files must begin and end with multiple-inclusion protection.199

[header-guards]200

1 #ifndef PACKAGE_CLASS_H
2 #define PACKAGE_CLASS_H
3 // The text of the header goes in here ...
4 #endif // PACKAGE_CLASS_H

Header files are often included many times in a program. Because C++201

does not allow multiple definitions of a class, it is necessary to prevent the202

compiler from reading the definitions more than once.203

The include guard should include both the package name and class name,204

to ensure that is unique.205

Don’t start the include guard name with an underscore; such names are206

reserved to the compiler.207

Be careful to use the same string in the ifndef and the define. It’s useful208

to get in the habit of using copy/paste here rather than retyping the string.209

8 Version 2.1

3.1 Organizing the code 3 CODING

Some compilers support an extension #pragma once that has similar210

functionality. A long time ago, this was sometimes faster, as it allowed211

the compiler to skip reading headers that have already been read. How-212

ever, modern compilers will automatically do this optimization based on213

recognizing header guards. As #pragma once is nonstandard and has no214

compelling advantage, it is best avoided.215

In some rare cases, a file may be intended to be included multiple times, and216

thus not have an include guard. Such files should be explicitly commented217

as such, and should usually have an extension other than “.h”; “.def” is218

sometimes used for this purpose.219

• Use forward declaration instead of including a header file, if this is220

sufficient. [forward-declarations]221

1 class Line;
2 class Point
3 {
4 public:
5 // Distance from a line
6 Number distance(const Line& line) const;
7 };

Here it is sufficient to say that Line is a class, without giving details which222

are inside its header. This saves time in compilation and avoids an apparent223

dependency upon the Line header file.224

Be careful, however: this does not work if Line is actually an alias (as is225

the case, for example, with many of the xAOD classes).226

• Each header file must contain the declaration for one class only,227

except for embedded or very tightly coupled classes or collections228

of small helper classes. [one-class-per-source]229

This makes your source code files easier to read. This also improves the230

version control of the files; for example the file containing a stable class231

declaration can be committed and not changed any more.232

Some exceptions: Small classes used as helpers for another class should gen-233

erally not go in their own file, but should instead be placed with the larger234

class. Sometimes several very closely related classes may be grouped to-235

9 Version 2.1

3.1 Organizing the code 3 CODING

gether in a single file; in that case, the files should be named after whichever236

is the “primary” class. A number of related small helper classes (not associ-237

ated with a particular larger class) may be grouped together in a single file,238

which should be given a descriptive name. An example of the latter could239

be a set of classes used as exceptions for a package.240

• Implementation files must hold the member function defini-241

tions for the class(es) declared in the corresponding header file.242

[implementation-file]243

This is for the same reason as for the previous item.244

• Ordering of #include statements. [include-ordering]245

#include directives should generally be listed according to dependency246

ordering, with the files that have the most dependencies coming first. This247

implies that the first #include in a “.cxx” file should be the corresponding248

“.h” file, followed by other #include directives from the same package.249

These would then be followed by #include directives for other packages,250

again ordered from most to least dependent. Finally, system #include251

directives should come last.252

1 // Example for CaloCell.cxx
2 // First the corresponding header.
3 #include "CaloEvent/CaloCell.h"
4 // The headers from other ATLAS packages,
5 // from most to least dependent.
6 #include "CaloDetDescr/CaloDetDescrElement.h"
7 #include "SGTools/BaseInfo.h"
8 // Headers from external packages.
9 #include "CLHEP/Geometry/Vector3D.h"

10 #include "CLHEP/Geometry/Point3D.h"
11 // System headers.
12 #include <cmath>

Ordering the #include directives in this way gives the best chance of253

catching problems where headers fail to include other headers that they254

depend on.255

Some old guides recommended testing on the C++ header guard around the256

#include directive. This advice is now obsolete and should be avoided.257

10 Version 2.1

3.1 Organizing the code 3 CODING

1 // Obsolete --- don't do this anymore.
2 #ifndef MYPACKAGE_MYHEADER_H
3 # include "MyPackage/MyHeader.h"
4 #endif

The rationale for this was to avoid having the preprocessor do redundant258

reads of the header file. However, current C++ compilers do this optimiza-259

tion on their own, so this serves only to clutter the source.260

• Do not use “using” directives or declarations in headers or prior to261

an #include. [no-using-in-headers]262

A using directive or declaration imports names from one namespace into263

another, often the global namespace.264

This does, however, lead to pollution of the global namespace. This can265

be manageable if it’s for a single source file; however, if the directive is in266

a header file, it can affect many different source files. In most cases, the267

author of these sources won’t be expecting this.268

Having using in a header can also hide errors. For example:269

1 // In first header A.h:
2 using namespace std;
3

4 // In second header B.h:
5 #include "A.h"
6

7 // In source file B.cxx
8 #include "B.h"
9 ...

10 vector<int> x; // Missing std!

Here, a reference to std::vector in B.cxx is mistakenly written without270

the std:: qualifier. However, it works anyway because of the using271

directive in A.h. But imagine that later B.h is revised so that it no longer272

uses anything from A.h, so the #include of A.h is removed. Suddenly,273

the reference to vector in B.cxx no longer compiles. Now imagine there274

are several more layers of #include and potentially hundreds of affected275

11 Version 2.1

3.2 Control flow 3 CODING

source files. To try to prevent problems like this, headers should not use276

using outside of classes. (Within a class definition, using can have a277

different meaning that is not covered by this rule.)278

For similar reasons, if you have a using directive or declaration in a “.cxx”279

file, it should come after all #include directives. Otherwise, the using280

may serve to hide problems with missing namespace qualifications in the281

headers.282

This rule does not apply when using is used to define a type alias (similarly283

to typedef).284

3.2 Control flow285

• Do not change a loop variable inside afor loop block. [do-not-modify-286

for-variable]287

When you write a for loop, it is highly confusing and error-prone to change288

the loop variable within the loop body rather than inside the expression exe-289

cuted after each iteration. It may also inhibit many of the loop optimizations290

that the compiler can perform.291

• Prefer range-based for loops. [prefer-range-based-for]292

Prefer a range-based for to a loop with explicit iterators. That is, prefer:293

1 std::vector<int> v = ...;
2 for (int x : v) {
3 doSomething (x);
4 }

to294

1 std::vector<int> v = ...;
2 for (std::vector<int>::const_iterator it = v.begin();
3 it != v.end();
4 ++it)
5 {
6 doSomething (*it);
7 }

12 Version 2.1

3.2 Control flow 3 CODING

In some cases you can’t make this replacement; for example, if you need to295

call methods on the iterator itself, or you need to manage multiple iterators296

within the loop. But most simple loops over STL ranges are more simply297

written with a range-based for.298

As of C++20, you can initialize additional variables in a range-based for:299

1 void foo (const std::vector<float>& v) {
2 for (int i = 0; float f : v) {
3 std::cout << i++ << " " << f << "\n";
4 }
5 }

• Switch statements should have a default clause. [switch-default]300

A switch statement should have a default clause, rather than just falling301

off the bottom, as a cue to the reader that this case was expected.302

In some cases, a switch statement may be on a enum and includes case303

clauses for all possible values of the enum. In such cases, a default cause304

is not required. Recent compilers will generate warnings if some elements305

of an enum are not handled in a switch. This mitigates the risk that a306

switch does not get updated after a new enum value is added.307

• Each clause of a switch statement must end with break. [switch-308

break]309

If you must “fall through” from one switch clause to another (excluding310

the trivial case of a clause with no statements), this should be explicitly311

indicated using the fallthrough attribute. This should, however, be a312

rare case.313

1 switch (case) {
2 case 1:
3 doSomething();
4 [[fallthrough]];
5 case 2:
6 doSomethingMore();
7 break;
8 ...

13 Version 2.1

3.3 Object life cycle 3 CODING

Recent compilers will warn about such constructs unless you use the at-314

tribute or a special comment. For new code, using the attribute is preferred.315

• An if-statement which does not fit in one line must have braces316

around the conditional statement. [if-bracing]317

This makes code much more readable and reliable, by clearly showing the318

flow paths.319

The addition of a final else is particularly important in the case where320

you have if/else-if. To be safe, even single statements should be explicitly321

blocked by {}.322

1 if (val == thresholdMin) {
2 statement;
3 }
4 else if (val == thresholdMax) {
5 statement;
6 }
7 else {
8 statement; // handles all other (unforeseen) cases
9 }

• Do not use goto. [no-goto]323

Use break or continue instead.324

This statement remains valid also in the case of nested loops, where the use325

of control variables can easily allow to break the loop, without using goto.326

goto statements decrease readability and maintainability and make testing327

difficult by increasing the complexity of the code.328

If goto statements must be used, it’s better to use them for forward branch-329

ing than backwards, and the functions involved should be kept short.330

3.3 Object life cycle331

3.3.1 Initialization of variables and constants332

• Declare each variable with the smallest possible scope and initialize333

it at the same time. [variable-initialization]334

14 Version 2.1

3.3 Object life cycle 3 CODING

It is best to declare variables close to where they are used. Otherwise you335

may have trouble finding out the type of a particular variable.336

It is also very important to initialize the variable immediately, so that its337

value is well defined.338

1 int value = -1; // initial value clearly defined
2 int maxValue; // initial value undefined ...
3 // NOT recommended

• Avoid use of “magic literals” in the code. [no-magic-literals]339

If some number or string has a particular meaning, it’s best to declare a340

symbol for it, rather than using it directly. This is especially true if the same341

value must be used consistently in multiple places.342

Bad example:343

1 class A
2 {
3 ...
4 TH1* m_array[10];
5 };
6

7 void A::foo()
8 {
9 for (int i = 0; i < 10; i++) {

10 m_array[i] = dynamic_cast<TH1*>
11 (gDirectory()->Get (TString ("hist_") +
12 TString::Itoa(i,10)));
13 }

Better example:344

1 class A
2 {
3 ...
4

5 static const s_numberOfHistograms = 10;
6 static TString s_histPrefix;

15 Version 2.1

3.3 Object life cycle 3 CODING

7 TH1* m_array[s_numberOfHistograms];
8 };
9

10 TString s_histPrefix = "hist_";
11

12 void A::foo()
13 {
14 for (int i = 0; i < s_numberOfHistograms; i++) {
15 TString istr = TString::Itoa (i, 10); // base 10
16 m_array[i] = dynamic_cast<TH1*>
17 (gDirectory()->Get (s_histPrefix + istr);
18 }

It is not necessary to turn every literal into a symbol. For example, the345

‘10’ in the example above in the Itoa call, which gives the base for the346

conversion, would probably not benefit from being made a symbol, though347

a comment might be helpful. Similarly, sometimes reserve() is called on348

a std::vector before it is filled with a value that is essentially arbitrary.349

It probably also doesn’t help to make this a symbol, but again, a comment350

would be helpful. Strings containing text to be written as part of a log351

message are also best written literally.352

In general, though, if you write a literal value other than ‘0’, ‘1’, true,353

false, or a string used in a log message, you should consider defining a354

symbol for it.355

• Use the <numbers> header for mathematical constants. [math-356

constants]357

Basic mathematical constants are available in the header <numbers>. Use358

these in preference to the M_ constants from math.h or explicit definitions:359

1 #include <numbers>
2 #include <cmath>
3 double f (double x) {
4 return std::sin (x * std::numbers::pi);
5 }

• Declare each type of variable in a separate declaration statement, and360

16 Version 2.1

3.3 Object life cycle 3 CODING

do not declare different types (e.g. int and int*) in one declaration361

statement. [separate-declarations]362

Declaring multiple variables on the same line is not recommended. The363

code will be difficult to read and understand.364

Some common mistakes are also avoided. Remember that when you declare365

a pointer, a unary pointer is bound only to the variable that immediately366

follows.367

1 int i, *ip, ia[100], (*ifp)(); // Not recommended
2

3 // recommended way:
4 LoadModule* oldLm = 0; // pointer to the old object
5 LoadModule* newLm = 0; // pointer to the new object

Bad example: both ip and jp were intended to be pointers to integers, but368

only ip is — jp is just an integer!369

1 int* ip, jp;

• Do not use the same variable name in outer and inner scope. [no-370

variable-shadowing]371

Otherwise the code would be very hard to understand; and it would certainly372

be very error prone.373

Some compilers will warn about this.374

• Be conservative in using auto. [using-auto]375

The auto keyword allows one to omit explicitly writing types that the376

compile can deduce. Examples:377

1 auto x = 10; // Type int deduced
2 auto y = 42ul; // Type unsigned long deduced.
3 auto it = vec.begin(); // Iterator type deduced

Some authorities have recommended using auto pretty much everywhere378

you can (calling it “auto almost always”). However, our experience has379

been that this adversely affects the readability and robustness of the code.380

It generally helps a reader to understand what the code is doing if the type381

17 Version 2.1

3.3 Object life cycle 3 CODING

is apparent, but with auto, it often isn’t. Using auto also makes it more382

difficult to find places where a particular type is used when searching the383

code with tools like LXR. It can also make it more difficult to track errors384

back to their source:385

1 const Foo* doSomething();
2 ... a lot of code here ...
3 auto foo = doSomething();
4 // What is the type of foo here? You have to look up
5 // doSomething() in order to find out! Makes it much
6 // harder to find all places where the type Foo
7 // gets used.
8

9 // If the return type of doSomething() changes, you'll
10 // get an error here, not at the doSomething() call.
11 foo->doSomethingElse();

auto has also been observed to be a frequent source of errors leading to386

unwanted copies of objects. For example, in this code:387

1 std::vector<std::vector<int> > arr = ...;
2 for (auto v : arr) {
3 for (auto elt : v) { ...

each element of the outermost vector will be copied, as the assignment to388

v will be done by value. One would probably want:389

1 std::vector<std::vector<int> > arr = ...;
2 for (const auto& v : arr) {
3 for (auto elt : v) { ...

but having to be aware of the type like this kind of obviates the motivation390

for using auto in the first place. Using the type explicitly makes this sort391

of error much more difficult.392

The current recommendation is to generally not use auto in place of a393

(possibly-qualified) simple type:394

1 // Use these
2 int x = 42;

18 Version 2.1

3.3 Object life cycle 3 CODING

3 const Foo* foo = doSomething();
4 for (const CaloCell* cell : caloCellContainer) ...
5 Foo foo (x);
6

7 // Rather than these
8 auto x = 42;
9 auto foo = doSomething();

10 for (auto cell : caloCellContainer) ...
11 auto foo = Foo {x};

There are a few sorts of places where it generally makes sense to use auto.395

– When the type is already evident in the expression and the declaration396

would be redundant. This is usually the case for expressions with new397

or make_unique.398

1 // auto is fine here.
2 auto foo = new Foo;
3 auto ufoo = std::make_unique<Foo>();

– When you need a declaration for a complicated derived type, where399

the type itself isn’t of much interest.400

1 // Fine to use auto here; the full name of the
2 // type is too cumbersome to be useful.
3 std::map<int, std::string> m = ..;
4 auto ret = m.insert (std::make_pair (1, "x"));
5 if (ret.second)

– In the case where a class method returns a type defined within the401

class, using the auto syntax to write the return type at the end of the402

signature can make things more readable when the method is defined403

out-of-line:404

1 template <class T> class C {
2 public:
3 using ret_t = int;
4 ret_t foo();
5 };

19 Version 2.1

3.3 Object life cycle 3 CODING

6

7 // Verbose: the return type is interpreted at the
8 // global scope, so it needs to be qualified with
9 // the class name.

10 template <class T>
11 typename C<T>::ret_t C<T>::foo() ...
12

13 // With this syntax, the return type is
14 // interpreted within the class scope.
15 template <class T>
16 auto C<T>::foo() -> ret_t ...

– auto may also be useful in writing generic template code.405

In some cases, C++20 allows declaring a template function without the406

template keyword when the argument is declared as auto:407

1 auto fn (auto x) { return x + 1; }

It is recommended to avoid this syntax for public interfaces.408

In general, the decision as to whether or not to use auto should be made409

on the basis of what makes the code easier to read. It is bad practice to use410

it simply to save a few characters of typing.411

3.3.2 Constructor initializer lists412

• Let the order in the initializer list be the same as the order of the413

declarations in the header file: first base classes, then data members.414

[member-initializer-ordering]415

It is legal in C++ to list initializers in any order you wish, but you should416

list them in the same order as they will be called.417

The order in the initializer list is irrelevant to the execution order of the418

initializers. Putting initializers for data members and base classes in any or-419

der other than their actual initialization order is therefore highly confusing420

and can lead to errors.421

Class members are initialized in the order of their declaration in the class;422

the order in which they are listed in a member initialization list makes no423

20 Version 2.1

3.3 Object life cycle 3 CODING

difference whatsoever! So if you hope to understand what is really going on424

when your objects are being initialized, list the members in the initialization425

list in the order in which those members are declared in the class.426

Here, in the bad example, m_data is initialized first (as it appears in the427

class) before m_size, even though m_size is listed first. Thus, the m_data428

initialization will read uninitialized data from m_size.429

Bad example:430

1 class Array
2 {
3 public:
4 Array(int lower, int upper);
5 private:
6 int* m_data;
7 unsigned m_size;
8 int m_lowerBound;
9 int m_upperBound;

10 };
11 Array::Array(int lower, int upper) :
12 m_size(upper-lower+1),
13 m_lowerBound(lower),
14 m_upperBound(upper),
15 m_data(new int[m_size])
16 { ...

Correct example:431

1 class Array
2 {
3 public:
4 Array(int lower, int upper);
5 private:
6 unsigned m_size;
7 int m_lowerBound;
8 int m_upperBound;
9 int* m_data;

10 };

21 Version 2.1

3.3 Object life cycle 3 CODING

11 Array::Array(int lower, int upper) :
12 m_size(upper-lower+1),
13 m_lowerBound(lower),
14 m_upperBound(upper),
15 m_data(new int[m_size]) { ...

Virtual base classes are always initialized first, then base classes, data432

members, and finally the constructor body for the derived class is run.433

1 class Derived : public Base // Base is number 1
2 {
3 public:
4 explicit Derived(int i);
5 // The keyword explicit prevents the constructor
6 // from being called implicitly.
7 // int x = 1;
8 // Derived dNew = x;
9 // will not work

10

11 Derived();
12

13 private:
14 int m_jM; // m_jM is number 2
15 Base m_bM; // m_bM is number 3
16 };
17

18 Derived::Derived(int i) : Base(i), m_jM(i), m_bM(i) {
19 // Recommended order 1 2 3
20 ...
21 }

3.3.3 Copying of objects434

• A function must never return, or in any other way give access to,435

references or pointers to local variables outside the scope in which436

they are declared. [no-refs-to-locals]437

Returning a pointer or reference to a local variable is always wrong because438

22 Version 2.1

3.3 Object life cycle 3 CODING

it gives the user a pointer or reference to an object that no longer exists.439

Bad example:440

You are using a complex number class, Complex, and you write a method441

that looks like this:442

1 Complex&
2 calculateC1 (const Complex& n1, const Complex& n2)
3 {
4 double a = n1.getReal()-2*n2.getReal();
5 double b = n1.getImaginary()*n2.getImaginary();
6

7 // Create local object.
8 Complex C1(a,b);
9

10 // Return reference to local object.
11 // The object is destroyed on exit from this
12 // function: trouble ahead!
13 return C1;
14 }

In fact, most compilers will spot this and issue a warning.443

This particular function would be better written to return the result by444

value:445

1 Complex calculateC1 (const Complex& n1,
2 const Complex& n2)
3 {
4 double a = n1.getReal()-2*n2.getReal();
5 double b = n1.getImaginary()*n2.getImaginary();
6

7 return Complex(a,b);
8 }

• If objects of a class should never be copied, then the copy con-446

structor and the copy assignment operator should be deleted. [copy-447

protection]448

Ideally the question whether the class has a reasonable copy semantic will449

23 Version 2.1

3.3 Object life cycle 3 CODING

naturally be a result of the design process. Do not define a copy method for450

a class that should not have it.451

By deleting the copy constructor and copy assignment operator, you can452

make a class non-copyable.453

1 // There is only one ATLASExperimentalHall,
2 // and that should not be copied
3 class ATLASExperimentalHall
4 {
5 public:
6 ATLASExperimentalHall();
7 ~ATLASExperimentalHall();
8

9 // Delete copy constructor to disallow copying.
10 ATLASExperimentalHall(const ATLASExperimentalHall&)
11 = delete;
12

13 // Delete assignment operator to disallow assignment.
14 ATLASExperimentalHall&
15 operator=(const ATLAS_ExperimentalHall&) = delete;
16 };

In older versions of the language, this was achieved by declaring the deleted454

methods as private (and not implementing them). For new code, prefer455

explicitly deleting the functions.456

1 // There is only one ATLASExperimentalHall,
2 // and that should not be copied
3 class ATLASExperimentalHall
4 {
5 public:
6 ATLASExperimentalHall();
7 ~ATLASExperimentalHall();
8

9 private:
10 // Disallow copy constructor and assignment.
11 ATLASExperimentalHall(const ATLASExperimentalHall&);
12 ATLASExperimentalHall& operator=

24 Version 2.1

3.3 Object life cycle 3 CODING

13 (const ATLAS_ExperimentalHall&);
14 };

• If a class owns memory via a pointer data member, then the copy457

constructor, the assignment operator, and the destructor should all458

be implemented. [define-copy-and-assignment]459

The compiler will generate a copy constructor, an assignment operator, and460

a destructor if these member functions have not been declared. A compiler-461

generated copy constructor does memberwise initialization and a compiler-462

generated copy assignment operator does memberwise assignment of data463

members and base classes. For classes that manage resources (examples:464

memory (new), files, sockets) the generated member functions probably465

have the wrong behavior and must be implemented by the developer. You466

have to decide if the resources pointed to must be copied as well (deep467

copy), and implement the correct behavior in the operators. Of course, the468

constructor and destructor must be implemented as well.469

Bad Example:470

1 class String
2 {
3 public:
4 String(const char *value=0);
5 ~String(); // Destructor but no copy constructor
6 // or assignment operator.
7 private:
8 char *m_data;
9 };

10

11 String::String(const char *value)
12 { // Correct behavior implemented in constructor.
13 m_data = new char[strlen(value)]; // Fill m_data
14 }
15 String::~String()
16 { // Correct behavior implemented in destructor
17 delete m_data;
18 }
19

25 Version 2.1

3.3 Object life cycle 3 CODING

20 ...
21

22

23 // Declare and construct a. m_data points to "Hello"
24 String a("Hello");
25

26 // Open new scope
27 { // Declare and construct b.
28 // m_data points to "World"
29 String b("World");
30

31 b=a;
32 // Execute default op= as synthesized by the compiler.
33 // This is simply memberwise assignment.
34 // For pointers like m_data, this is a bitwise copy
35 // ==> m_data of "a" and "b" now point to the
36 // same string "Hello"
37 // ==> 1) Memory b used to point to never deleted:
38 // a possible memory leak!
39 // 2) When either a or b goes out of scope,
40 // its destructor will delete the memory
41 // still pointed to by the other.
42 }
43

44 // Close scope: b's destructor called;
45 // memory still pointed to by `a' deleted!
46 String c=a;
47 // But m_data of a is undefined!!

• Assignment member functions must work correctly when the left471

and right operands are the same object. [self-assign]472

This requires some care when writing assignment code, as this case (when473

left and right operands are the same) may require that most of the code is474

bypassed.475

1 A& A::operator=(const A& a)
2 {

26 Version 2.1

3.4 Conversions 3 CODING

3 if (this != &a) {
4 // ... implementation of operator=
5 }
6 }

3.4 Conversions476

• Use explicit rather than implicit type conversion. [avoid-implicit-477

conversions]478

Most conversions are bad in some way. They can make the code less479

portable, less robust, and less readable. It is therefore important to use only480

explicit conversions. Implicit conversions are almost always bad.481

• Use the C++ cast operators (dynamic_cast and static_cast)482

instead of the C-style casts. [use-c++-casts]483

In general, casts should be strongly discouraged, especially the old style C484

casts.485

The new cast operators give the user a way to distinguish between different486

types of casts, and to ensure that casts only do what is intended and nothing487

else.488

The C++ static_cast operator allows explicitly requesting allowed im-489

plicit conversions and between integers and enumerations. It also allows490

casting pointers up and down a class hierarchy (as long as there’s no vir-491

tual inheritance), but no checking is done when casting from a less- to a492

more-derived type.493

The C++ dynamic_cast operator is used to perform safe casts down or494

across an inheritance hierarchy. One can actually determine whether the495

cast succeeded because failed casts are indicated either by a bad_cast496

exception or a null pointer. The use of this type of information at run time497

is called Run-Time Type Identification (RTTI).498

1 int n = 3;
2 double r = static_cast<double>(n) * a;
3

4 class Base { };

27 Version 2.1

3.4 Conversions 3 CODING

5 class Derived : Base { };
6 void f(Derived* d_ptr)
7 {
8 // if the following cast is inappropriate
9 // a null pointer will be returned!

10 Base* b_ptr = dynamic_cast<Base*>(d_ptr);
11 // ...
12 }

• Do not convert const objects to non-const. [no-const-cast]499

In general you should never cast away the constness of objects.500

If you have to use a const_cast to remove const, either you’re writing501

some low-level code that that’s deliberately subverting the C++ type system,502

or you have some problem in your design or implementation that the503

const_cast is papering over.504

Sometimes you’re forced to use a const_cast due to problems with exter-505

nal libraries. But if the library in question is maintained by ATLAS, then506

try to get it fixed in the original library before resorting to const_cast.507

The keyword mutable allows data members of an object that have been508

declared const to remain modifiable, thus reducing the need to cast away509

constness. The mutable keyword should only be used for variables which510

are used for caching information. In other words, the object appears not to511

have changed but it has stored something to save time on subsequent use.512

• Do not use reinterpret_cast. [no-reinterpret-cast]513

reinterpret_cast is machine-, compiler- and compile-options-514

dependent. It is a way of forcing a compiler to accept a type conversion515

which is dependent on implementation. It blows away type-safety, violates516

encapsulation and more importantly, can lead to unpredictable results.517

reinterpret_cast has legitimate uses, such as low-level code which518

deliberately goes around the C++ type system. Such code should usually519

be found only in the core and framework packages.520

Exception: reinterpret_cast is required in some cases if one is not521

using old-style casts. It is required for example if you wish to convert a522

28 Version 2.1

3.4 Conversions 3 CODING

callback function signature (X11, expat, Unix signal handlers are common523

causes). Some external libraries (X11 in particular) depend on casting524

function pointers. If you absolutely have to work around limitations in525

external libraries, you may of course use it.526

One particularly nasty case to be aware of and to avoid is pointer aliasing.527

If two pointers have different types, the compiler may assume that they528

cannot point at the same object. For example, in this function:529

1 int convertAndBuffer (int* buf, float x)
2 {
3 float* fbuf = reinterpret_cast<float*>(buf);
4 *fbuf = x;
5 return *buf;
6 }

the compiler is entitled to rewrite it as530

1 int convertAndBuffer (int* buf, float x)
2 {
3 int ret = *buf;
4 float* fbuf = reinterpret_cast<float*>(buf);
5 *fbuf = x;
6 return ret;
7 }

(As a special case, you can safely convert any pointer type to or from a531

char*.) The proper way to do such a conversion is with a std::bit_cast:532

1 #include <bit>
2 int convertAndBuffer (int* buf, float x)
3 {
4 *buf = std::bit_cast<int> (x);
5 return *buf;
6 }

Prior to C++20, the recommended way to do this was with a union, but that533

should not be used for new code.534

29 Version 2.1

3.5 The class interface 3 CODING

3.5 The class interface535

3.5.1 Inline functions536

• Header files must contain no implementation except for small func-537

tions to be inlined. These inlined functions must appear at the end538

of the header after the class definition. [inline-functions-impls]539

If you have many inline functions, it is usually better to split them out into540

a separate file, with extension “.icc”, that is included at the end of the541

header.542

Inline functions can improve the performance of your program; but they543

also can increase the overall size of the program and thus, in some cases,544

have the opposite result. It can be hard to know exactly when inlining is545

appropriate. As a rule of thumb, inline only very simple functions to start546

with (one or two lines). You can use profiling information to identify other547

functions that would benefit from inlining.548

Use of inlining makes debugging hard and, even worse, can force a complete549

release rebuild or large scale recompilation if the inline definition needs to550

be changed.551

3.5.2 Argument passing and return values552

• Pass an unmodifiable argument by value only if it is of built-in type553

or small; otherwise, pass the argument by const reference (or by554

const pointer if it may be null). [large-argument-passing]555

An object is considered small if it is a built-in type or if it contains at most556

one small object. Built-in types such as char, int, and double can be557

passed by value because it is cheap to copy such variables. If an object is558

larger than the size of its reference (typically 64 bits), it is not efficient to559

pass it by value. Of course, a built-in type can be passed by reference when560

appropriate.561

1 void func(char c); // OK
2 void func(int i); // OK
3 void func(double d); // OK
4 void func(complex<float> c); // OK
5

30 Version 2.1

3.5 The class interface 3 CODING

6 void func(Track t); // not good, since Track is large,
7 // so there is an overhead in
8 // copying t

Arguments of class type are often costly to copy, so it is preferable to pass562

a const reference to such objects; in this way the argument is not copied.563

Const access guarantees that the function will not change the argument.564

In terms of efficiency, passing by pointer is the same as passing by reference.565

However, passing by reference is preferred, unless it is possible to the object566

to be missing from the call.567

1 void func(const LongString& s); // const reference

• If an argument may be modified, pass it by non-const reference568

and clearly document the intent. [modifiable-arguments]569

For example:570

1 // Track @c t is updated by the addition of hit @c h.
2 void updateTrack(const Hit& h, Track& t);

Again, passing by references is preferred, but a pointer may be used if the571

object can be null.572

• Use unique_ptr to pass ownership of an object to a function. [pass-573

ownership]574

To pass ownership of an object into a function, use unique_ptr (by value):575

1 void foo (std::unique_ptr<Object> obj);
2

3 ...
4

5 auto obj = std::make_unique<Object>();
6 ...
7 foo (std::move (obj);

In most cases, unique_ptr should be passed by value. There are however576

a few possible use cases for passing unique_ptr by reference:577

31 Version 2.1

3.5 The class interface 3 CODING

– The called function may replace the object passed in with another one.578

In this case, however, consider returning the new object as the value579

of the function.580

– The called function may only conditionally take ownership of the581

passed object. This is likely to be confusing and error-prone and582

should probably be avoided. Consider if a shared_ptr would be583

better in this case.584

There is basically no good case for passing unique_ptr as a const refer-585

ence.586

If you need to interoperate with existing code, object ownership may be587

passed by pointer. The fact that ownership is transferred should be clearly588

documented.589

Do not pass ownership using references.590

Here are a some additional examples to illustrate this. Assume that class C591

contains a member Foo* m_owning_pointer which the class deletes.592

(In modern C++, it would of course usually be better for this to be a593

unique_ptr.)594

1 // --- Best
2 void C::takesOwnership (std::unique_ptr<Foo> foo)
3 {
4 delete m_owning_pointer;
5 m_owning_pointer = foo.release();
6 }
7

8 // --- OK if documented.
9 // Takes ownership of the @c foo pointer.

10 void C::takesOwnership (Foo* foo)
11 {
12 delete m_owning_pointer;
13 m_owning_pointer = foo;
14 }
15

16 // --- Don't do this!
17 void C::takesOwnership (Foo& foo)

32 Version 2.1

3.5 The class interface 3 CODING

18 {
19 delete m_owning_pointer;
20 m_owning_pointer = &foo;
21 }

• Return basic types or new instances of a class type by value. [return-595

by-value]596

Returning a class instance by value is generally preferred to passing an597

argument by non-const reference:598

1 // Bad
2 void getVector (std::vector<int>& v)
3 {
4 v.clear();
5 for (int i=0; i < 10; i++) v.push_back(v);
6 }
7

8 // Better
9 std::vector<int> getVector()

10 {
11 std::vector<int> v;
12 for (int i=0; i < 10; i++) v.push_back(v);
13 return v;
14 }

The return-value optimization plus move semantics will generally mean599

that there won’t be a significant efficiency difference between the two.600

• Use unique_ptr to return ownership. [returning-ownership]601

If a function is returning a pointer to something that is allocated off the heap602

which the caller is responsible for deleting, then return a unique_ptr.603

If compatibility with existing code is an issue, then a plain pointer may be604

used, but the caller takes ownership should be clearly documented.605

Do not return ownership via a reference.606

1 // Best
2 std::unique_ptr<Foo> makeFoo()

33 Version 2.1

3.5 The class interface 3 CODING

3 {
4 return std::make_unique<Foo> (...);
5 }
6

7 // OK if documented
8 // makeFoo() returns a newly-allocated Foo;
9 // caller must delete it.

10 Foo* makeFoo()
11 {
12 return new Foo (...);
13 }
14

15 // NO!
16 Foo& makeFoo()
17 {
18 Foo* foo = new Foo (...);
19 return *foo;
20 }

• Have operator= return a reference to *this. [assignment-return-607

value]608

This ensures that609

1 a = b = c;

will assign c to b and then b to a as is the case with built-in objects.610

• Use std::span to represent and pass a bounded region of memory.611

[span]612

In particular, use std::span instead of passing a pointer with a sepa-613

rate element count (or even worse, a pointer to an array with no bounds614

information).615

So you can use this:616

1 #include
2 int sum (const std::span<int>& s)
3 {

34 Version 2.1

3.5 The class interface 3 CODING

4 int ret = 0;
5 for (int i : s) ret += i;
6 return ret;
7 }

instead of617

1 int sum (const int* p, size_t n)
2 {
3 int ret = 0;
4 for (size_t i = 0; i < n; i++) ret += p[i];
5 return ret;
6 }

One might expect that std::span would include an at() method, to618

allow indexing with bounds checking, but that is only available in C++23.619

In the meantime, CxxUtils::span is very similar to std::span but does620

implement at().621

3.5.3 const correctness622

• Declare a pointer or reference argument, passed to a function, as623

const if the function does not change the object bound to it. [const-624

arguments]625

An advantage of const-declared parameters is that the compiler will ac-626

tually give you an error if you modify such a parameter by mistake, thus627

helping you to avoid bugs in the implementation.628

1 // operator<< does not modify the String parameter
2 ostream& operator<<(ostream& out, const String& s);

• The argument to a copy constructor and to an assignment operator629

must be a const reference. [copy-ctor-arg]630

This ensures that the object being copied is not altered by the copy or631

assign.632

• In a class method, do not return pointers or non-const references633

to private data members. [no-non-const-refs-returned]634

35 Version 2.1

3.5 The class interface 3 CODING

Otherwise you break the principle of encapsulation.635

If necessary, you can return a pointer to a const or const reference.636

This does not mean that you cannot have methods returning an iterator637

if your class acts as a container.638

An allowed exception to this rule if the use of the singleton pattern. In639

that case, be sure to add a clear explanation in a comment so that other640

developers will understand what you are doing.641

• Declare as const a member function that does not affect the state642

of the object. [const-members]643

Declaring a member function as const has two important implications.644

First, only const member functions can be called for const objects; and645

second, a const member function will not change data members646

It is a common mistake to forget to const declare member functions that647

should be const.648

This rule does not apply to the case where a member function which does649

not affect the state of the object overrides a non-const member function650

inherited from some super class.651

• Do not letconstmember functions change the state of the program.652

[really-const]653

A const member function promises not to change any of the data members654

of the object. Usually this is not enough. It should be possible to call a655

const member function any number of times without affecting the state656

of the complete program. It is therefore important that a const member657

function refrains from changing static data members or other objects to658

which the object has a pointer or reference.659

3.5.4 Overloading and default arguments660

• Use function overloading only when methods differ in their argu-661

ment list, but the task performed is the same. [function-overloading]662

Using function name overloading for any other purpose than to group663

closely related member functions is very confusing and is not recommended.664

36 Version 2.1

3.5 The class interface 3 CODING

3.5.5 Comparisons665

• Define comparisons for custom types using operator== and666

operator<=>. [comparison-operators]667

Comparisons of for a custom class should be written using operator==668

(for equality/inequality) and operator<=> (for ordering). The compiler669

will supply the other comparison operators (operator!=, operator<,670

etc.) automatically. Where possible, operator<=> is best defined using671

the same operator on the members involved. Examples:672

1 #include <compare>
2 #include <tuple>
3

4 class S
5 {
6 public:
7 bool operator== (const S& other)
8 {
9 return m_key == other.m_key;

10 }
11 std::strong_ordering operator<=> (const S& other)
12 {
13 return m_key <=> other.m_key;
14 }
15 private:
16 int m_key;
17 };
18

19

20 class Version
21 {
22 public:
23 bool operator== (const Version& other)
24 {
25 return m_major == other.m_major &&
26 m_minor == other.m_minor;
27 }
28

37 Version 2.1

3.6 new and delete 3 CODING

29 std::strong_ordering
30 operator<=> (const Version& other)
31 {
32 return
33 std::make_tuple (m_major, m_minor) <=>
34 std::make_tuple (other.m_major, other.m_minor);
35 }
36 private:
37 int m_major;
38 int m_minor;
39 };

3.6 new and delete673

• Do not use new and delete where automatic allocation will work.674

[auto-allocation-not-new-delete]675

Suppose you have a function that takes as an argument a pointer to an676

object, but the function does not take ownership of the object. Then suppose677

you need to create a temporary object to pass to this function. In this case,678

it’s better to create an automatically-allocated object on the stack than it679

is to use new / delete. The former will be faster, and you won’t have the680

chance to make a mistake by omitting the delete.681

1 // Not good:
2 Foo* foo = new Foo;
3 doSomethingWithFoo (foo);
4 delete foo;
5

6 // Better:
7 Foo foo;
8 doSomethingWithFoo (&foo);

• Match every invocation of new with one invocation of delete in682

all possible control flows from new. [match-new-delete]683

A missing delete would cause a memory leak.684

However, in the Gaudi/Athena framework, an object created with new685

38 Version 2.1

3.6 new and delete 3 CODING

and registered in StoreGate is under control of StoreGate and must not be686

deleted.687

In new code, you should generally use make_unique for this.688

1 #include <memory>
2

3 ...
4 DataVector<C>* dv = ...;
5 auto c = std::make_unique<C>("argument");
6 ...
7 if (test) {
8 dv->push_back (std::move (c));
9 }

auto_ptr was an attempt to do something similar to unique_ptr in older689

versions of the language. However, it has some serious deficiencies and690

should not be used in new code.691

• A function should explicitly document if it takes ownership of a692

pointer passed to it as an argument. [explicit-ownership]693

The default expectation for a function should be that it does not take own-694

ership of pointers passed to it as arguments. In that case, the function must695

not invoke delete on the pointer, nor pass it to any other function that696

takes ownership.697

However, if the function is clearly documented as taking ownership of the698

pointer, then it must either delete the pointer or pass it to another function699

which will ensure that it is eventually deleted.700

Rather than simply documenting that a function takes ownership of a701

pointer, it is recommended that you use std::unique_ptr to explicitly702

show the transfer of ownership.703

1 void foo (std::unique_ptr<C> ptr);
2

3 ...
4 std::unique_ptr<C> p (new C);
5 ...
6 foo (std::move (p));

39 Version 2.1

3.7 Static and global objects 3 CODING

7 // The argument of foo() is initialized by move.
8 // p is left as a null pointer.

• Do not access a pointer or reference to a deleted object. [deleted-704

objects]705

A pointer that has been used as argument to a delete expression should706

not be used again unless you have given it a new value, because the language707

does not define what should happen if you access a deleted object. This708

includes trying to delete an already deleted object. You should assign709

the pointer to nullptr or a new valid object after the delete is called;710

otherwise you get a “dangling” pointer.711

• After deleting a pointer, assign it to nullptr. [deleted-objects-2]712

C++ guarantees that deletion of null pointers is safe, so this gives some713

safety against double deletes.714

1 X* myX = makeAnX();
2 delete myX;
3 myX = nullptr;

This is of course not needed if the pointer is about to go out of scope, or715

when objects are deleted in a destructor (unless it’s particularly complicated).716

But this is a good practice if the pointer persists beyond the block of code717

containing the delete (especially if it’s a member variable).718

3.7 Static and global objects719

• Do not declare variables in the global namespace. [no-global-variables]720

If necessary, encapsulate those variables in a class or in a namespace. Global721

variables violate encapsulation and can cause global scope name clashes.722

Global variables make classes that use them context-dependent, hard to723

manage, and difficult to reuse.724

For variables that are used only within one “.cxx” file, put them in an725

anonymous namespace.726

1 namespace {
2 // This variable is visible only in the file

40 Version 2.1

3.8 Object-oriented programming 3 CODING

3 // containing this declaration, and is guaranteed
4 // not to conflict with any declarations from
5 // other files.
6 int counter;
7 }

• Do not put functions into the global namespace. [no-global-functions]727

Similarly to variables, functions declarations should be put in a namespace.728

If they are used only within one “.cxx” file, then they should be put in an729

anonymous namespace.730

In a few cases, it might be necessary to declare a function in the global731

namespace to have overloading work properly, but this should be an excep-732

tion.733

3.8 Object-oriented programming734

• Do not declare data members to be public. [no-public-data-members]735

This ensures that data members are only accessed from within member736

functions. Hiding data makes it easier to change implementation and737

provides a uniform interface to the object.738

1 class Point
2 {
3 public:
4 Number x() const; // Return the x coordinate
5 private:
6 Number m_x;
7 // The x coordinate (safely hidden)
8 };

The fact that the class Point has a data member m_x which holds the x739

coordinate is hidden.740

An exception is objects that are intended to be more like C-style structures741

than classes. Such classes should usually not have any methods, except742

possibly a constructor to make initialization easier.743

41 Version 2.1

3.8 Object-oriented programming 3 CODING

• If a class has at least one virtual method then it must have a public744

virtual destructor or (exceptionally) a protected destructor. [virtual-745

destructor]746

The destructor of a base class is a member function that in most cases747

should be declared virtual. It is necessary to declare it virtual in a base748

class if derived class objects are deleted through a base class pointer. If749

the destructor is not declared virtual, only the base class destructor will be750

called when an object is deleted that way.751

There is one case where it is not appropriate to use a virtual destructor:752

a mix-in class. Such a class is used to define a small part of an interface,753

which is inherited (mixed in) by subclasses. In these cases the destructor,754

and hence the possibility of a user deleting a pointer to such a mix-in base755

class, should normally not be part of the interface offered by the base class.756

It is best in these cases to have a nonvirtual, nonpublic destructor because757

that will prevent a user of a pointer to such a base class from claiming758

ownership of the object and deciding to simply delete it. In such cases it759

is appropriate to make the destructor protected. This will stop users from760

accidentally deleting an object through a pointer to the mix-in base-class,761

so it is no longer necessary to require the destructor to be virtual.762

• Always re-declare virtual functions as virtual in derived classes.763

[redeclare-virtual]764

This is just for clarity of code. The compiler will know it is virtual, but765

the human reader may not. This, of course, also includes the destructor,766

as stated in item [virtual-destructor, page 42]. Virtual functions in derived767

classes which override methods from the base class should also be declared768

with the override keyword. If the signature of the method is changed769

in the base class, so that the declaration in the derived class is no longer770

overriding it, this will cause the compiler to flag an error. (As an exception,771

override is not required for destructors. Since there is only one possible772

signature for a destructor, override doesn’t add anything.)773

1 class B
2 {
3 public:
4 virtual void foo(int);
5 };

42 Version 2.1

3.8 Object-oriented programming 3 CODING

6

7 class D : public B
8 {
9 public:

10 // Declare foo as a virtual method that overrides
11 // a method from the base class.
12 virtual void foo(int) override;
13 };

• Avoid multiple inheritance, except for abstract interfaces. [no-774

multiple-inheritance]775

Multiple inheritance is seldom necessary, and it is rather complex and error776

prone. The only valid exception is for inheriting interfaces or when the777

inherited behavior is completely decoupled from the class’s responsibility.778

For a detailed example of a reasonable application of multiple inheritance,779

see [12], item 43.780

• Avoid the use of friend declarations. [no-friend]781

Friend declarations are almost always symptoms of bad design and they782

break encapsulation. When you can avoid them, you should.783

Possible exceptions are the streaming operators and binary operators on784

classes. Other possible exceptions include very tightly coupled classes and785

unit tests.786

• Avoid the use of protected data members. [no-protected-data]787

Protected data members are similar to friend declarations in that they788

allow a controlled violation of encapsulation. However, it is even less well-789

controlled in the case of protected data, since any class may derive from790

the base class and access the protected data.791

The use of protected data results in one class depending on the internals792

of another, which is a maintenance issue should the base class need to793

change. Like friend declarations, the use of protected member data should794

be avoided except for very closely coupled classes (that should generally be795

part of the same package). Rather, you should define a proper interface for796

what needs to be done (parts of which may be protected).797

43 Version 2.1

3.9 Notes on the use of library functions. 3 CODING

3.9 Notes on the use of library functions.798

• Use std::abs to calculate an absolute value. [std-abs]799

The return type of std::abs will conform to the argument type; other800

variants of abs may not do this.801

In particular, beware of this:802

1 #include <cstdlib>
2 float foo (float x)
3 {
4 return abs(x);
5 }

which will truncate x to an integer. (Clang will warn about this.)803

Conversely, in this example:804

1 #include <cmath>
2 int (int x)
3 {
4 return fabs(x);
5 }

the argument will first be converted to a float, then the result converted805

back to an integer.806

Using std::abs uniformly should do the right thing in almost all cases807

and avoid such surprises.808

• Use C++20 ranges with caution. [ranges]809

C++20 adds ranges, an abstraction an abstraction of something that can be810

iterated over. Essentially, a range is something that can return begin() and811

end() iterators. The ranges library allows composing and transforming812

ranges. For example:813

1 #include <ranges>
2 ...
3 auto even = [](int i) { return (i%2) == 0; };
4 auto sq = [](int i) { return i*i; };

44 Version 2.1

3.9 Notes on the use of library functions. 3 CODING

5 using namespace std::views;
6 auto r = iota(0, 6) | filter(even) | transform(sq);
7 for (int i : r) std::cout << i << " ";

Ranges can be very useful. However, they need to be used with caution.814

– Do not reimplement missing functionality yourself.815

Much of that C++20 ranges library originated from an external library,816

range-v3 [14]. However, many useful operations from that library817

did not make it into the C++20 standard (some are added in later818

versions of the standard). For example, in C++20 ranges, there is no819

straightforward way to initialize a std::vector from a range. If820

such additional functionality is needed, it should be added centrally821

in CxxUtils rather than being reimplemented where it is needed.822

In that way, it can be shared with other parts of Athena. This also823

makes it easier to replace any such reimplemented functionality with824

versions from the standard library when they become available.825

– Functions used to define ranges should not have side effects.826

One can define a range in terms of functions that filter and transform827

the range, as in the example above. However, it may be difficult828

to predict under exactly what circumstances these functions may be829

called, as this depends on the implementation of the range components.830

Therefore, functions used with ranges should not have side-effects831

(and should generally execute quickly).832

– Beware of dangling ranges.833

Ranges are often references to other objects. Like any references, they834

must not outlive the object that they reference.835

1 auto squares()
2 {
3 auto sq = [](int i) { return i*i; };
4 std::vector<int> v {1, 2, 3, 4};
5 return v | std::views::transform(sq);
6 // BAD: returns a range with a dangling
7 // reference to a deleted vector.

45 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

8 }

– Do not modify containers referenced by ranges.836

Similarly, do not modify a container referenced by a range. Some837

of the range components may cache results internally; changing the838

underlying container may cause these to return incorrect results.839

1 std::vector<int> v {1, 2, 3, 4};
2 auto sq = [](int i) { return i*i; };
3 auto r = v | std::views::transform(sq);
4 v.insert (v.begin(), 5); // BAD: may invalidate
5 // the range r.

In general, C++20 view objects should be used directly after they are defined,840

and not saved in, say, member variables.841

3.10 Thread friendliness and thread safety842

Code that is to be run in AthenaMT as part of an AthAlgorithm must be “thread-843

friendly.” While the framework will ensure that no more than one thread is844

executing a given AthAlgorithm instance at one time, the code must ensure845

that it doesn’t interfere with other threads. Some guidelines for this are outlined846

below; but in brief: don’t use static data, don’t use mutable, and don’t cast away847

const. Following these rules will keep you out of most potential trouble.848

Code that runs as part of an AthService, an AthReentrantAlgorithm, a data849

object implementation, or other common code may need to be fully “thread-safe;”850

that is, allow for multiple threads to operate simultaneously on the same object.851

The easiest way to ensure this is for the object to have no mutable internal state,852

and only const methods. If, however, some threads may be modifying the state853

of the object, then some sort of locking or other means of synchronization will854

likely be required. A full discussion of this is beyond the scope of these guidelines.855

To run successfully in a multithreaded environment, algorithmic code must also856

respect the rules imposed by the framework on event and conditions data access.857

This is also beyond the scope of these guidelines.858

• Follow C++ thread-safety conventions for data objects. [mt-follow-859

c++-conventions]860

46 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

The standard C++ container objects follow the rule that methods declared861

as const are safe to call simultaneously from multiple threads, while no862

non-const method can be called simultaneously with any other method863

(const or non-const) on the same object.864

Classes meant to be data objects should generally follow the same rules,865

unless there is a good reason to the contrary. This will generally happen866

automatically if the rules outlined below are followed: briefly, don’t use867

static data, don’t use mutable, and don’t cast away const.868

Sometimes it may be useful to have data classes for which non-const meth-869

ods may be called safely from multiple threads. If so, this should be indicated870

in the documentation of the class, and perhaps hinted from its name (maybe871

like ConcurrentFoo).872

• Do not use non-const static variables [mt-no-nonconst-static]873

Do not use non-const static variables in thread-friendly code, either global874

or local.875

1 int a;
2 int foo() {
3 if (a > 0) { // Bad use of global static.
4 static int count = 0;
5 return ++count; // Bad use of local static.
6 }
7 return 0;
8 }
9

10 struct Bar
11 {
12 static int s_x;
13 int x() { return s_x; } // Bad use of static
14 // class member.
15 };

A const static is, however, perfectly fine:876

1 static const std::string s = "a string"; // OK, const

47 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

It’s generally OK to have static mutex or thread-local variables:877

1 static std::mutex m; // OK. It's a mutex,
2 // so it's meant to be accessed
3 // from multiple threads.
4 static thread_local int a; // OK, it's thread-local.

(Be aware, though, that thread-local variables can be quite slow.) A static878

std::atomic<T> variable may be OK, but only if it doesn’t need to be879

updated consistently with other variables.880

• Do not cast away const [mt-no-const-cast]881

This rule was already mentioned above. However, it deserves particular882

emphasis in the context of thread safety. The usual convention for C++ is883

that a const method is safe to call simultaneously from multiple threads,884

while if you call a non-const method, no other threads can be simultaneously885

accessing the same object. If you cast away const, you are subverting these886

guarantees. Any use of const_cast needs to be analyzed for its effects887

on thread-safety and possibly protected with locking.888

For example, consider this function:889

1 void foo (const std::vector<int>& v)
2 {
3 ...
4 // Sneak this in.
5 const_cast<std::vector<int>&>(v).push_back(10);
6 }

Someone looking at the signature of this function would see that it takes890

only a const argument, and therefore conclude that that it is safe to call891

this simultaneously with other code that is also reading the same vector892

instance. But it is not, and the const_cast is what causes that reasoning893

to fail.894

• Avoid mutable members. [mt-no-mutable]895

The use of mutable members has many of the same problems as896

const_cast (as indeed, mutable is really just a restricted version897

of const_cast). A mutable member can generally not be changed898

48 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

from a non-const method without some sort of explicit locking or other899

synchronization. It is best avoided in code that should be used with900

threading.901

mutable can, however, be used with objects that are explicitly intended to902

be accessed from multiple threads. These include mutexes and thread-local903

pointers. In some cases, members of atomic type may also be safely made904

mutable, but only if they do not need to be updated consistently with905

other members.906

• Do not return non-const member pointers/references from const907

methods [mt-const-consistency]908

Consider the following fragment:909

1 class C
2 {
3 public:
4 Impl* impl() const { return m_impl; }
5 private:
6 Impl* m_impl;
7 };

This is perfectly valid according to the C++ const rules. However, it allows910

modifying the Impl object following a call to the const method impl().911

Whether this is actually a problem depends on the context. If m_impl is912

pointing at some unrelated object, then this might be OK; however, if it913

is pointing at something which should be considered part of C, then this914

could be a way around the const guarantees.915

To maintain safety, and to make the code easier to reason about, do not916

return a non-const pointer (or reference) member from a const member917

function.918

• Be careful returning const references to class members. [mt-const-919

references]920

Consider the following example:921

1 class C
2 {

49 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

3 public:
4 const std::vector<int>& v() const { return m_v; }
5 void append (int x) { m_v.push_back (x); }
6 private:
7 std::vector<int> m_v;
8 };
9

10 int getSize (const C& c)
11 {
12 return c.v().size();
13 }
14

15 int push (C& c)
16 {
17 c.append (1);
18 }

This is a fairly typical example of a class that has a large object as a member,922

with an accessor the returns the member by const reference to avoid having923

to do a copy.924

But suppose now that one thread calls getSize() while another thread925

calls push() at the same time on the same object. It can happen that first926

getSize() gets the reference and starts the call to size(). At that point,927

the push_back() can run in the other thread. If push_back() runs at928

the same time as size(), then the results are unpredictable — the size()929

call could very well return garbage.930

Note that it doesn’t help to add locking within the class C:931

1 class C
2 {
3 public:
4 const std::vector<int>& v() const
5 {
6 std::lock_guard<std::mutex> lock (m_mutex);
7 return m_v;
8 }
9 void append (int x)

50 Version 2.1

3.10 Thread friendliness and thread safety 3 CODING

10 {
11 std::lock_guard<std::mutex> lock (m_mutex);
12 m_v.push_back (x);
13 }
14 private:
15 mutable std::mutex m_mutex;
16 std::vector<int> m_v;
17 };

This is because the lock is released once v() returns — and at that point,932

the caller can call (const) methods on the vector instance unprotected933

by the lock.934

Here are a few ways in which this could possibly be solved. Which is935

preferable would depend on the full context in which the class is used.936

– Change the v() accessor to return the member by value instead of by937

reference.938

– Remove the v() accessor and instead add the needed operations to939

the C class, with appropriate locking. For the above example, we could940

add something like:941

1 size_t C::vSize() const
2 {
3 std::lock_guard<std::mutex> lock (m_mutex);
4 return m_v.size();
5 }

– Change the type of the m_v member to something that is inherently942

thread-safe. This could mean replacing it with a wrapper around943

std::vector that does locking internally, or using something like944

concurrent_vector from TBB.945

– Do locking externally to class C. For example, introduce a mutex946

that must be acquired in both getSize() and push() in the above947

example.948

51 Version 2.1

3.11 Formatted output 3 CODING

3.11 Formatted output949

• Prefer std::format to printf or iostream formatting. [use-950

format]951

For new code, use the C++20 formatting library to format values to a string952

rather than using printf-style formatting or using iostream manipula-953

tors.954

Example:955

1 #include <format>
2 ...
3 const char* typ = "ele";
4 float energy = 14.2345;
5 int mask = 323;
6

7 std::cout << std::format
8 ("A {1:.2f} GeV {0} mask {2:#06x}.\n",
9 typ, energy, mask);

10 // prints: A 14.23 GeV ele mask 0x0143.

Compare using printf-style formatting:956

1 #include "CxxUtils/StrFormat.h"
2 ...
3 std::cout << CxxUtils::strformat
4 ("A %.2f GeV %s mask %#06x.\n",
5 energy, typ, mask);

or iostream:957

1 #include <iomanip>
2 ...
3 const int default_precision = std::cout.precision();
4 const std::ios_base::fmtflags default_flags =
5 std::cout.flags();
6 const char default_fill = std::cout.fill();
7 std::cout << "A " << std::fixed << std::setprecision(2)
8 << energy << std::defaultfloat

52 Version 2.1

3.12 Assertions and error conditions 3 CODING

9 << std::setprecision(default_precision)
10 << " GeV " << typ << " mask "
11 << std::hex << "0x" << std::setfill('0')
12 << std::setw(4) << mask
13 << std::setfill(default_fill)
14 << ".\n";
15 std::cout.flags(default_flags);

Like the streaming operator, std::format has a way of customizing how958

a given type is formatted. However, it is somewhat more involved than959

for operator<<; in addition, std::format will not use existing custom960

streaming operators. Therefore, for generating printable representations961

of class instances, it is probably better in most cases to use the iostream962

mechanism.963

3.12 Assertions and error conditions964

• Pre-conditions and post-conditions should be checked for validity.965

[pre-post-conditions]966

You should validate your input and output data whenever an invalid input967

can cause an invalid output.968

• Don’t use assertions in place of exceptions. [assertion-usage]969

Assertions should only be used to check for conditions which should be970

logically impossible to occur. Do not use them to check for validity of input971

data. For such cases, you should raise an exception (or return a Gaudi error972

code) instead.973

Assertions may be removed from production code, so they should not be974

used for any checks which must always be done.975

3.13 Error handling976

• Use the standard error printing facility for informational messages.977

Do not use cerr and cout. [no-cerr-cout]978

The “standard error printing facility” in Athena/Gaudi is MsgStream. No979

production code should use cout. Classes which are not Athena-aware980

53 Version 2.1

3.13 Error handling 3 CODING

could use cerr before throwing an exception, but all Athena-aware classes981

should use MSG::FATAL and/or throw an exception. In addition, it is ac-982

ceptable to use writes to cout in unit tests.983

When using MsgStream, note that a call to, e.g., msg() <<984

MSG::VERBOSE that is suppressed by the output level has a higher985

runtime cost than a call suppressed by if (msgLvl <= MSG::VERBOSE).986

The ATH_MSG macros (ATH_MSG_INFO and ATH_MSG_DEBUG etc) wrap987

msg() calls in appropriate if statements and are preferred in general988

for two reasons: they take up less space in the source code and indicate989

immediately that the message is correctly handled.990

• Check for all errors reported from functions. [check-return-status]991

It is important to always check error conditions, regardless of how they are992

reported.993

• Use exceptions to report fatal errors from non-Gaudi components.994

[exceptions]995

Exceptions in C++ are a means of separating error reporting from error996

handling. They should be used for reporting errors that the calling code997

should not be expected to handle. An exception is “thrown” to an error998

handler, so the treatment becomes non-local.999

If you are writing a Gaudi component, or something that returns a Gaudi1000

StatusCode, then you should usually report an error by posting a message1001

to the message service and returning a status code of ERROR.1002

However, if you are writing a non-Gaudi component and you need to report1003

an error that should stop event processing, you should raise an exception.1004

If your code is throwing exceptions, it is helpful to define a separate class1005

for each exception that you throw. That way, it is easy to stop in the1006

debugger when a particular exception is thrown by putting a breakpoint in1007

the constructor for that class.1008

1 #include <stdexcept>
2

3 class ExcMyException
4 : public std::runtime_error
5 {

54 Version 2.1

3.13 Error handling 3 CODING

6 public:
7 // Constructor can take arguments to pass through
8 // additional information.
9 ExcMyException (const std::string& what)

10 : std::runtime_error ("My exception: " : what)
11 {}
12 };
13

14 ...
15

16 throw MyException ("You screwed up.");

• Do not throw exceptions as a way of reporting uncommon values1009

from a function. [exception-usage]1010

If an error can be handled locally, then it should be. Exceptions should1011

not be used to signal events which can be expected to occur in a regular1012

program execution. It is up to programmers to decide what it means to be1013

exceptional in each context.1014

Take for example the case of a function find(). It is quite common that the1015

object looked for is not found, and it is certainly not a failure; it is therefore1016

not reasonable in this case to throw an exception. It is clearer if you return1017

a well-defined value.1018

• Do not use exception specifications. [no-exception-specifications]1019

Exception specifications were a way to declare that a function could throw1020

one of only a restricted set of exceptions. Or rather, that’s what most people1021

wanted it to do; what it actually did was require the compiler to check, at1022

runtime, that a function did not throw any but a restricted set of exceptions.1023

Experience has shown that exception specifications are generally not useful1024

and non-empty exception specifications are now an error [15]. They should1025

not be used in new code, and are not allowed in C++20.1026

There is also the keyword noexcept. The motivation for this was really to1027

address a specific problem with move constructors and exception-safety, and1028

it is not clear that it is generally useful [16]. For now, it is not recommended1029

to use noexcept, unless you have a specific situation where you know it1030

55 Version 2.1

3.13 Error handling 3 CODING

would help.1031

• Do not catch a broad range of exceptions outside of framework code.1032

[no-broad-exception-catch]1033

The C++ exception mechanism allows catching a thrown exception, giving1034

the program the chance to continue execution from the point where the1035

exception was caught. This can be used some specific cases where you1036

know that some specific exception isn’t really a problem. However, you1037

should catch only the particular exception involved here. If you use an1038

overly-broad catch specification, you risk hiding other problems. Example:1039

1 try {
2 return getObject ("foo");
3 // getObject may throw ExcNotFound if the "foo"
4 // object is not found. In that case we can just
5 // return 0.
6 }
7 catch (ExcNotFound&) {
8 return 0;
9 }

10

11 // But one would not want to do this, since that would
12 // hide other errors:
13 catch (...) {
14 return 0;
15 }

• Prefer to catch exceptions as const reference, rather than as value.1040

[catch-const-reference]1041

Classes used for exceptions can be polymorphic just like data classes, and1042

this is in fact the case for the standard C++ exceptions. However, if you1043

catch an exception and name the base class by value, then the object thrown1044

is copied to an instance of the base class.1045

For example, consider this program:1046

1 #include <stdexcept>
2 #include <iostream>

56 Version 2.1

3.13 Error handling 3 CODING

3

4 class myex : public std::exception {
5 public:
6 virtual const char* what() const noexcept
7 { return "Mine!"; }
8 };
9

10 void foo()
11 {
12 throw myex();
13 }
14

15 int main()
16 {
17 try {
18 foo();
19 }
20 catch (std::exception ex) {
21 std::cout << "Exception: " << ex.what() << "\n";
22 }
23 return 0;
24 }

It looks like the intention here is to have a custom message printed when the1047

exception is caught. But that’s not what happens — this program actually1048

prints:1049

1 Exception: std::exception

That’s because in the catch clause, the myex instance is copied to a1050

std::exception instance, so any information about the derived myex1051

class is lost. If we change the catch to use a reference instead:1052

1 catch (const std::exception ex&) {

then the program prints what was probably intended.1053

1 Exception: Mine!

57 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

Recent versions of gcc will warn about this.1054

3.14 Parts of C++ to avoid1055

Here a set of different items are collected. They highlight parts of the language1056

which should be avoided, either because there are better ways to achieve the1057

desired results or because the language features are still immature. In particular,1058

programmers should avoid using the old standard C functions, where C++ has1059

introduced new and safer possibilities.1060

• Do not use C++ modules. [no-modules]1061

Modules were introduced in C++20 as a better alternative to #include.1062

If a module is referenced via import, it avoids repeatedly parsing the1063

code as well as avoiding issues that arise due to interference between1064

headers. However, building modules requires significant support from the1065

build system, and the support in compilers and associated tools is still1066

very immature. Even using the standard library as a module is not fully1067

functional with C++20.1068

For now, avoid any use of modules. With C++23, it may be possible to use1069

standard libraries as modules, but building ATLAS code as modules will1070

require significant additional development.1071

• Do not use C++ coroutines. [no-coroutines]1072

Coroutines allow for a non-linear style of control flow, where one can return1073

from the middle of a function and then resume execution from that point at1074

a later time. However, the coroutine interfaces available in C++20 are quite1075

low-level: they are intended to be used as building blocks for other library1076

components rather than for direct use by user code. Further, uncontrolled1077

use of the type of control flow made possible by coroutines has the potential1078

to be terribly confusing.1079

For now, avoid use of coroutines. If you have a use case that would greatly1080

benefit from using coroutines, please consult with software coordination.1081

This recommendation will be revisited for new versions of C++ which may1082

include easier mechanisms for using coroutines.1083

• Do not use malloc, calloc, realloc, and free. Use new and1084

delete instead. [no-malloc]1085

58 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

You should avoid all memory-handling functions from the standard C-1086

library (malloc, calloc, realloc, and free) because they do not call1087

constructors for new objects or destructors for deleted objects.1088

Exceptions may include aligned memory allocations, but this should gener-1089

ally not be done outside of low-level code in core packages.1090

• Do not use functions defined in stdio. Use the iostream func-1091

tions in their place. [no-stdio]1092

scanf and printf are not type-safe and they are not extensible. Use1093

operator>> and operator<< associated with C++ streams instead,1094

along with std::format to handle formatting (see use-format, page 52).1095

iostream and stdio functions should never be mixed.1096

Example:1097

1 // type safety
2 char* aString("Hello Atlas");
3 printf("This works: %s \n", aString);
4 cout <<"This also works:"<<aString<<endl;
5 char aChar('!');
6 printf("This does not %s \n", aChar);
7 // and you get a core dump
8 cout <<"But this is still OK :"<<aChar<<endl;
9

10 //extensibility
11 std::string aCPPString("Hello Atlas");
12 printf("This does not work: %s \n", aCPPString);
13 //Core dump again

It is of course acceptable to use stdio functions if you’re calling an external1098

library that requires them.1099

If you need to use printf style formatting, see “CxxUtils/StrFormat.h.”1100

However, std::format is preferred for new code.1101

• Do not use the ellipsis notation for function arguments. [no-ellipsis]1102

Prior to C++ 11, functions with an unspecified number of arguments had1103

to be declared and used in a type-unsafe manner:1104

59 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

1 // avoid to define functions like:
2 void error(int severity, ...) // "severity" followed
3 // by a zero-terminated
4 // list of char*s

This method should be avoided.1105

As of C++11, one can accomplish something similar using variadic tem-1106

plates:1107

1 template<typename ...ARGS>
2 void error(int severity, ARGS...)

This is fine, but should be used judiciously. It’s appropriate for forwarding1108

arguments through a template function. For other cases, it’s worth thinking1109

if there might be a simpler way of doing things.1110

An ellipsis can also occur in a catch clause to catch any exception:1111

catch(...). This is acceptable, but should generally be restricted to1112

framework-like code.1113

• Do not use preprocessor macros to take the place of functions, or1114

for defining constants. [no-macro-functions]1115

Use templates or inline functions rather than the pre-processor macros.1116

1 // NOT recommended to have function-like macro
2 #define SQUARE(x) x*x
3

4 // Better to define an inline function:
5 inline int square(int x) {
6 return x*x;
7 };

• Do not declare related numerical values as const. Use enum decla-1117

rations. [use-enum]1118

The enum construct allows a new type to be defined and hides the numerical1119

values of the enumeration constants.1120

60 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

1 enum State {halted, starting, running, paused};

• Do not use NULL to indicate a null pointer; use the nullptr key-1121

word instead. [nullptr]1122

Older code often used the constant 0. NULL is appropriate for C, but not1123

C++.1124

• Do not useconst char* or built-in arrays “[]”; usestd::string1125

instead. [use-std-string]1126

One thing to be aware of, though. C++ will implicitly convert a const1127

char* to a std::string; however, this may add significant overhead if1128

used in a loop. For example:1129

1 void do_something (const std::string& s);
2 ...
3 for (int i=0; i < lots; i++) {
4 ...
5 do_something ("hi there!");

Each time through the loop, this will make a new std::string copy of1130

the literal. Better to move the conversion to std::string outside of the1131

loop:1132

1 std::string myarg = "hi there!";
2 for (int i=0; i < lots; i++) {
3 ...
4 do_something (myarg);

• Avoid using union types. [avoid-union-types]1133

Unions can be an indication of a non-object-oriented design that is hard to1134

extend. The usual alternative to unions is inheritance and dynamic binding.1135

The advantage of having a derived class representing each type of value1136

stored is that the set of derived class can be extended without rewriting any1137

code. Because code with unions is only slightly more efficient, but much1138

more difficult to maintain, you should avoid it.1139

Unions may be used in some low-level code and in places where efficiency1140

61 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

is particularly important. Unions may also be used in low-level code to1141

avoid pointer aliasing (see no-reinterpret-cast, page 28).1142

• Avoid using bit fields. [avoid-bitfields]1143

Bit fields are a feature that C++ inherited from C that allow one to specify1144

that a member variable should occupy only a specified number of bits, and1145

that it can be packed together with other such members.1146

1 class C
2 {
3 public:
4 unsigned int a : 2; // Allocated two bits
5 unsigned int b : 3; // Allocated three bits
6 };

It may be tempting to use bit fields to save space in data written to disk, or1147

in packing and unpacking raw data. However, this usage is not portable.1148

The C++ standard has this to say:1149

Allocation of bit-fields within a class object is implementation-1150

defined. Alignment of bit-fields is implementation-defined. Bit-1151

fields are packed into some addressable allocation unit. [Note:1152

Bit-fields straddle allocation units on some machines and not on1153

others. Bit-fields are assigned right-to-left on some machines,1154

left-to-right on others. – end note]1155

Besides portability issues, there are other other potential issues with bit1156

fields that could be confusing: bit fields look like class members but obey1157

subtly different rules. For example, one cannot form a reference to a bit1158

field or take its address. There is also an issue of data races when writing1159

multithreaded code. It is safe to access two ordinary class members simul-1160

taneously from different threads, but not two adjacent bit fields. (Though1161

it is safe to access simultaneously two bit field members separated by an1162

ordinary member. This leads to be possibility that thread-safety of bit field1163

access could be compromised by the removal of an unrelated member.)1164

Access to bit fields also incurs a CPU penalty.1165

In light of this, it is best to avoid bit fields in most cases. Exceptions would1166

be cases where saving memory is very important and the internal structure1167

62 Version 2.1

3.14 Parts of C++ to avoid 3 CODING

of the class is not exposed.1168

For some cases, std::bitset can be a useful, portable replacement for1169

bit fields.1170

• Do not use asm (the assembler macro facility of C++). [no-asm]1171

Many special-purpose instructions are available through the use of compiler1172

intrinsic functions. For those rare use cases where an asm might be needed,1173

the use of the asm should be encapsulated and made available in a low-level1174

package (such as CxxUtils).1175

• Do not use the keyword struct for types used as classes. [no-struct]1176

The class keyword is identical to struct except that by default its con-1177

tents are private rather than public. struct may be allowed for writing1178

non-object-oriented PODs (plain old data, i.e. C structs) on purpose. It is a1179

good indication that the code is on purpose not object-oriented.1180

• Do not use static objects at file scope. Use an anonymous namespace1181

instead. [anonymous-not-static]1182

The use of static to signify that something is private to a source file is1183

obsolete; further it cannot be used for types. Use an anonymous namespace1184

instead.1185

For entities which are not public but are also not really part of a class, prefer1186

putting them in an anonymous namespace to putting them in a class. That1187

way, they won’t clutter up the header file.1188

• Do not declare your own alias for booleans. Use the bool type of1189

C++ for booleans. [use-bool]1190

The bool type was not implemented in C. Programmers usually got around1191

the problem by typedefs and/or const declarations. This is no longer needed,1192

and must not be used in ATLAS code.1193

• Avoid pointer arithmetic. [no-pointer-arithmetic]1194

Pointer arithmetic reduces readability, and is extremely error prone. It1195

should be avoid outside of low-level code.1196

• Do not declare variables with register. [no-register]1197

63 Version 2.1

3.15 Readability and maintainability 3 CODING

The register keyword was originally intended as a hint to the compiler1198

that a variable will be used frequently, and therefore it would be good to1199

assign a dedicated register to that variable. However, compilers have long1200

been able to do a good job of assigning values to registers; this is anyway1201

highly-machine dependent.1202

Use of the register keyword now an error.1203

3.15 Readability and maintainability1204

• Code should compile with no warnings. [no-warnings]1205

Many compiler warnings can indicate potentially serious problems with1206

your code. But even if a particular warning is benign, it should be fixed, if1207

only to prevent other people from having to spend time examining it in the1208

future.1209

Warnings coming from external libraries should be reported to whomever is1210

maintaining the ATLAS wrapper package for the library. Even if the library1211

itself can’t reasonably be fixed, it may be possible to put a workaround in1212

the wrapper package to suppress the warning.1213

See [17] for help on how to get rid of many common types of warning. If it1214

is really impossible to get rid of a warning, that fact should be documented1215

in the code.1216

• Keep functions short. [short-functions]1217

Short functions are easier to read and reason about. Ideally, a single function1218

should not be bigger than can fit on one screen (i.e., not more than 30–401219

lines).1220

• Avoid excessive nesting of indentation. [excessive-nesting]1221

It becomes difficult to follow the control flow in a function when it becomes1222

deeply nested. If you have more than 4–5 indentation levels, consider1223

splitting off some of the inner code into a separate function.1224

• Avoid duplicated code. [avoid-duplicate]1225

This statement has a twofold meaning.1226

64 Version 2.1

3.15 Readability and maintainability 3 CODING

The first and most evident is that one must avoid simply cutting and pasting1227

pieces of code. When similar functionalities are necessary in different1228

places, they should be collected in methods, and reused.1229

The second meaning is at the design level, and is the concept of code reuse.1230

Reuse of code has the benefit of making a program easier to understand1231

and to maintain. An additional benefit is better quality because code that is1232

reused gets tested much better.1233

Code reuse, however, is not the end-all goal, and in particular, it is less1234

important than encapsulation. One should not use inheritance to reuse a1235

bit of code from another class.1236

• Document in the code any cases where clarity has been sacrificed1237

for performance. [document-changes-for-performance]1238

Optimize code only when you know you have a performance problem. This1239

means that during the implementation phase you should write code that is1240

easy to read, understand, and maintain. Do not write cryptic code, just to1241

improve its performance.1242

Very often bad performance is due to bad design. Unnecessary copying of1243

objects, creation of large numbers of temporary objects, improper inheri-1244

tance, and a poor choice of algorithms, for example, can be rather costly1245

and are best addressed at the architecture and design level.1246

• Avoid creating type aliases for classes. [avoid-typedef]1247

Type aliases (typedefs) are a serious impediment in large systems. While1248

they simplify code for the original author, a system filled with aliases can1249

be difficult to understand. If the reader encounters a class A, he or she can1250

find an #include with “A.h” in it to locate a description of A; but aliases1251

carry no context that tell a reader where to find a definition. Moreover,1252

most of the generic characteristics obtained with aliases are better handled1253

by object oriented techniques, like polymorphism.1254

Aliases are acceptable where they provide part of the expected interface for1255

a class, for example value_type, etc. in classes used with STL algorithms.1256

They are often indispensable in template programming and metaprogram-1257

ming, and are also part of how xAOD classes and POOL converters are1258

typically defined.1259

65 Version 2.1

3.16 Portability 3 CODING

In other contexts, they should be used with care, and should generally be1260

accompanied with a comment giving the rationale for the alias.1261

Aliases may be used as a “customization point;” that is, to allow the pos-1262

sibility of changing a type in the future. For example, the auxiliary store1263

code uses integers to identify particular auxiliary data items. But rather1264

than declaring these as an integer type directly, an alias auxid_t is used.1265

This allows for the possibility of changing the type in the future without1266

having to make changes throughout the code base. It also makes explicit1267

that variables of that type are meant to identify auxiliary data items, rather1268

than being random integers.1269

An alias may also be used inside a function body to shorten a cumbersome1270

type name; however, this should be used sparingly.1271

• Code should use the standard ATLAS units for time, distance, energy,1272

etc. [atlas-units]1273

As a reminder, energies are represented as MeV and lengths as mm. Please1274

use the symbols defined in GaudiKernel/SystemOfUnits.h.1275

1 #include "GaudiKernel/SystemOfUnits.h"
2

3 float pt_thresh = 20 * Gaudi::Units::GeV;
4 float ip_cut = 0.1 * Gaudi::Units::cm;

3.16 Portability1276

• All code must comply with the 2020 version of the ISO C++ standard1277

(C++20). [standard-cxx]1278

A draft of the standard which is essentially identical to the final version may1279

be found at [4]. However, the standards documents are not very readable.1280

A better reference for most questions about what is in the standard is the1281

cppreference.com website [5].1282

At some point, compatibility with C++23 will also be required.1283

• Make non-portable code easy to find and replace. [limit-non-portable-1284

code]1285

66 Version 2.1

3.16 Portability 3 CODING

Non-portable code should preferably be factored out into a low-level pack-1286

age in Control, such as CxxUtils. If that is not possible, an #ifdef may1287

be used.1288

However, #ifdefs can make a program completely unreadable. In addition,1289

if the problems being solved by the #ifdef are not solved centrally by the1290

release tool, then you resolve the problem over and over. Therefore. the1291

using of #ifdef should be limited.1292

• Headers supplied by the implementation (system or standard li-1293

braries header files) must go in <> brackets; all other headers must1294

go in "" quotes. [system-headers]1295

1 // Include only standard header with <>
2 #include <iostream> // OK: standard header
3 #include <MyFyle.hh> // NO: nonstandard header
4

5 // Include any header with ""
6 #include "stdlib.h" // NO: better to use <>
7 #include "MyPackage/MyFyle.h" // OK

• Do not specify absolute directory names in include directives. In-1296

stead, specify only the terminal package name and the file name.1297

[include-path]1298

Absolute paths are specific to a particular machine and will likely fail1299

elsewhere.1300

The ATLAS convention is to include the package name followed by the file1301

name. Watch out: listing the package name twice is wrong, but some build1302

systems don’t catch it.1303

1 #include "/atlas/sw/dist/1.2/Foo/Bar/Qux.h"
2 // Wrong
3 #include "Foo/Bar/Qux.h" // Wrong
4 #include "Bar/Bar/Qux.h" // Wrong
5 #include "Bar/Qux.h" // Right

• Always treat include file names as case-sensitive. [include-case-1304

sensitive]1305

67 Version 2.1

3.16 Portability 3 CODING

Some operating systems, e.g. Windows NT, do not have case-sensitive1306

file names. You should always include a file as if it were case-sensitive.1307

Otherwise your code could be difficult to port to an environment with1308

case-sensitive file names.1309

1 // Includes the same file on Windows NT,
2 // but not on UNIX
3 #include <Iostream> //not correct
4 #include <iostream> //OK

• Do not make assumptions about the size or layout in memory of an1310

object. [no-memory-layout-assumptions]1311

The sizes of built-in types are different in different environment. For ex-1312

ample, an int may be 16, 32, or even 64 bits long. The layout of objects is1313

also different in different environments, so it is unwise to make any kind of1314

assumption about the layout in memory of objects.1315

If you need integers of a specific size, you can use the definitions from1316

<cstdint>:1317

1 #include <cstdint>
2

3 int16_t a; // A 16-bit signed int
4 uint8_t b; // A 8-bit unsigned int
5 int_fast_16_t c; // Fastest available signed int type
6 // at least 16 bits wide.

The C++ standard requires that class members declared with no intervening1318

access control keywords (public, protected, private) be laid out in1319

memory in the order in which they are declared in the class. However, if1320

there is an access control keyword between two member declarations, their1321

relative ordering in memory is unspecified. In any case, the compiler is free1322

to insert arbitrary padding between members.1323

• Take machine precision into account in your conditional statements.1324

Do not compare floats or doubles for equality. [float-precision]1325

Have a look at the std::numeric_limits<T> class, and make sure your1326

code is not platform-dependent. In particular, take care when testing float-1327

ing point values for equality. For example, it is better to use:1328

68 Version 2.1

3.16 Portability 3 CODING

1 const double tolerance = 0.001;
2

3 ...
4

5 #include <cmath>
6

7 if (std::abs(value1 - value2) < tolerance) ...

than1329

1 if (value1 == value2) ...

Also be aware that on 32-bit platforms, the result of inequality operations1330

can change depending on compiler optimizations if the two values are very1331

close. This can lead to problems if an STL sorting operation is based on this.1332

A fix is to use the operations defined in CxxUtils/fpcompare.h.1333

• Do not depend on the order of evaluation of arguments to a function;1334

in particular, never use the increment and decrement operators in1335

function call arguments. [order-of-evaluation]1336

The order of evaluation of function arguments is not specified by the1337

C++ standard, so the result of an expression like foo(a++, vec(a))1338

is platform-dependent.1339

1 func(f1(), f2(), f3());
2 // f1 may be evaluated before f2 and f3,
3 // but don't depend on it!

Beware in particular if you’re using random numbers. The result of some-1340

thing like1341

1 atan2 (static_cast<double>(rand()),
2 static_cast<double>(rand()));

can change depending on how it’s compiled.1342

• Do not use system calls if there is another possibility (e.g. the C++1343

run time library). [avoid-system-calls]1344

69 Version 2.1

4 STYLE

For example, do not forget about non-Unix platforms.1345

• Prefer int / unsigned int and double types. [preferred-types]1346

The default type used for an integer value should be either int or unsigned1347

int. Use other integer types (short, long, etc.) only if they are actually1348

needed.1349

For floating-point values, prefer using double, unless there is a need to save1350

space and the additional precision of a double vs. float is not important.1351

• Do not call any code that is not in the release or is not in the list of1352

allowed external software. [no-new-externals]1353

4 Style1354

This section concerns the style, as opposed to the functionality, of the code.1355

4.1 General aspects of style1356

• The public, protected, and private sections of a class must be1357

declared in that order. Within each section, nested types (e.g. enum1358

or class) must appear at the top. [class-section-ordering]1359

The public part should be most interesting to the user of the class, and1360

should therefore come first. The private part should be of no interest to the1361

user and should therefore be listed last in the class declaration.1362

1 class Path
2 {
3 public:
4 Path();
5 ~Path();
6

7 protected:
8 void draw();
9

10 private:
11 class Internal {
12 // Path::Internal declarations go here ...

70 Version 2.1

4.1 General aspects of style 4 STYLE

13 };
14 };

• Keep the ordering of methods in the header file and in the source1363

files identical. [method-ordering]1364

This makes it easier to go back and forth between the declarations and the1365

definitions.1366

• Statements should not exceed 100 characters (excluding leading1367

spaces). If possible, break long statements up into multiple ones.1368

[long-statements]1369

• Limit line length to 120 character positions (including white space1370

and expanded tabs). [long-lines]1371

• Include meaningful dummy argument names in function declara-1372

tions. Any dummy argument names used in function declarations1373

must be the same as in the definition. [dummy-argument-names]1374

Although they are not compulsory, dummy arguments make the class1375

interface much easier to read and understand.1376

For example, the constructor below takes two Number arguments, but what1377

are they?1378

1 class Point
2 {
3 public:
4 Point (Number, Number);
5 };

The following is clearer because the meaning of the parameters is given1379

explicitly.1380

1 class Point
2 {
3 public:
4 Point (Number x, Number y);
5 };

71 Version 2.1

4.1 General aspects of style 4 STYLE

• The code should be properly indented for readability reasons.1381

[indenting]1382

The amount of indentation is hard to regulate. If a recommendation were1383

to be given then two to four spaces seem reasonable since it guides the eye1384

well, without running out of space in a line too soon. The important thing1385

is that if one is modifying someone else’s code, the indentation style of the1386

original code should be adopted.1387

It is strongly recommended to use an editor that automatically indents code1388

for you.1389

Whatever style is used, if the structure of a function is not immediately1390

visually apparent, that should be a cue that that function is too complicated1391

and should probably broken up into smaller functions.1392

• Do not use spaces in front of [] and to either side of . and ->.1393

[spaces]1394

1 a->foo() // Good
2 x[1] // Good
3 b . bar() // Bad

Spacing in function calls is more a matter of taste. Several styles can be1395

distinguished. First, not using spaces around the parentheses (K&R, Linux1396

kernel):1397

1 foo()
2 foo(1)
3 foo(1, 2, 3)

Second, always putting a space before the opening parenthesis (GNU):1398

1 foo ()
2 foo (1)
3 foo (1, 2, 3)

Third, putting a space before the opening parenthesis unless there are no1399

arguments.1400

1 foo()

72 Version 2.1

4.2 Comments 4 STYLE

2 foo (1)
3 foo (1, 2, 3)

Fourth, putting spaces around the argument list:1401

1 foo()
2 foo(1)
3 foo(1, 2, 3)

In any case, if there are multiple arguments, they should have a space1402

between them, as above. A parenthesis following a C++ control keyword1403

with as if, for, while, and switch should always have a space before it.1404

• Keep the style of each file consistent within itself. [style-consistency]1405

Although standard appearance among ATLAS source files is desirable, when1406

you modify a file, code in the style that already exists in that file. This means,1407

leave things as you find them. Do not take a non-compliant file and adjust a1408

portion of it that you work on. Either fix the whole thing, or code to match.1409

• Prefer using to typedef. [prefer-using]1410

To declare a type alias, prefer the newer using syntax:1411

1 using Int_t = int;

to the typedef syntax:1412

1 typedef int Int_t;

The using syntax makes it clearer what is being defined; it can also be1413

used to declare templated aliases.1414

4.2 Comments1415

• Use Doxygen style comments before class/method/data member1416

declarations. Use “//” for comments in method bodies. [doxygen-1417

comments]1418

ATLAS has adopted the Doxygen code documentation tool, which requires1419

a specific format for comments. Doxygen comments either be in a block1420

73 Version 2.1

4.2 Comments 4 STYLE

delimited by /** */ or in lines starting with ///. We recommend using1421

the first form for files, classes, and functions/methods, and the second for1422

data members.1423

1 /**
2 * @file MyPackage/MyClusterer.h
3 * @author J. R. Programmer
4 * @date April 2014
5 * @brief Tool to cluster particles.
6 */
7

8 #ifndef MYPACKAGE_MYCLUSTERER_H
9 #define MYPACKAGE_MYCLUSTERER_H

10

11

12 #include "MyPackage/ClusterContainer.h"
13 #include "xAODBase/IParticleContainer.h"
14 #include "AthenaBaseComps/AthAlgTool.h"
15

16

17 namespace MyStuff {
18

19

20 /**
21 * @brief Tool to cluster particles.
22 *
23 * This tool forms clusters using the method
24 * described in ...
25 */
26 class MyClusterer
27 {
28 public:
29 ...
30

31 /**
32 * @brief Cluster particles.
33 * @param particles List of particles to cluster.
34 * @param[out] clusters Resulting cluster list.

74 Version 2.1

4.2 Comments 4 STYLE

35 *
36 * Some additional description can go here.
37 */
38 StatusCode
39 cluster (const xAOD::IParticleContainer& particles,
40 ClusterContainer& clusters) const;
41

42 ...
43

44 private:
45 /// Property: Cluster size.
46 float m_clusterSize;
47

48 ...
49 };
50

51

52 } // namespace MyStuff
53

54

55 #endif // MYPACKAGE_MYCLUSTERER_H

See the ATLAS Doxygen page [18].1424

Remember that the /* */ style of comment does not nest. If you want to1425

comment out a block of code, using #if 0 / #endif is safer than using1426

comments.1427

• All comments should be written in complete (short and expressive)1428

English sentences. [english-comments]1429

The quality of the comments is an important factor for the understanding1430

of the code. Please do fix typos, misspellings, grammar errors, and the like1431

in comments when you see them.1432

• In the header file, provide a comment describing the use of a declared1433

function and attributes, if this is not completely obvious from its1434

name. [comment-functions]1435

1 class Point

75 Version 2.1

5 CHANGES

2 {
3 public:
4 /**
5 * @brief Return the perpendicular distance
6 * of the point from Line @c l.
7 */
8 Number distance (Line l);
9 };

The comment includes the fact that it is the perpendicular distance.1436

5 Changes1437

5.1 Version 2.1 (Jan 1, 2026)1438

• Migrated source to pandoc-markdown. Produce mkdocs-compatible output.1439

Minor edits.1440

5.2 Version 2.0 (March 6, 2024)1441

• Updated for C++20.1442

– Don’t use modules or coroutines.1443

– Add recommendation to use <numbers>.1444

– Suggest using auto to move the return type to the end of a method1445

signature when returning types defined within the class.1446

– Suggest not defining template functions without the template key-1447

word.1448

– Recommend std::format for formatted output.1449

– Note that range-for can have init-statements.1450

– Mention std::bit_cast.1451

– Recommend using instead of typedef. Rephrase previous refer-1452

ences to typedef.1453

– Comparisons should be defined in terms of operator== and1454

operator<=>.1455

– Mention std::span.1456

• Some additional references.1457

• Clarify that non-ASCII characters should not be used in identifier names.1458

76 Version 2.1

5.3 Version 0.7 (Sep 18, 2019) 5 CHANGES

• Clarify that variable-length argument lists of variadic template functions1459

are OK.1460

5.3 Version 0.7 (Sep 18, 2019)1461

• Minor cleanups and updates to take into account that we now require1462

C++17.1463

• Use the fallthrough attribute, not a comment.1464

• Allow omitting the default clause in a switch statement on an enum1465

that handles all possible values. Recent compilers will warn if some values1466

are not handled, and it’s better to get such a diagnostic at compile-time1467

rather than at runtime.1468

• Clarify avoid-typedef section.1469

• Mention preference for ATH_MSG_ macros.1470

• Don’t require override for destructors.1471

• Avoid using #pragma once.1472

5.4 Version 0.6 (Dec 20, 2017)1473

• The register keyword is an error in C++17.1474

• Dynamic exception specifications are errors in C++17.1475

• Exceptions should be caught using const references, not by value.1476

• Discourage using protected data.1477

5.5 Version 0.5 (Nov 21, 2017)1478

• Add an initial set of guidelines for AthenaMT.1479

• Add recommendation to prefer range-based for.1480

5.6 Version 0.4 (Nov 16, 2017)1481

• Minor updates: we’re now using c++14. Add note about implicit fallthrough1482

warnings with gcc7. Add rule to use std::abs().1483

5.7 Version 0.3 (Aug 23, 2017)1484

• Add recommendation to avoid bit fields.1485

77 Version 2.1

5.8 Version 0.2 (Aug 9, 2017) 5 CHANGES

5.8 Version 0.2 (Aug 9, 2017)1486

• Small typo fixes.1487

• Add a brief description of pointer aliasing.1488

• Add more details about argument passing to functions.1489

• Add recommendation on auto.1490

References1491

[1] D. Knuth, Literate programming, The Computer Journal 27, 97 (1984).1492

[2] ATLAS Quality Control Group, ATLAS C++ Coding Standard, ATL-SOFT-
2002-001, 2001.

1493

[3] CERN Project Support Team, C++ Coding Standard, CERN-UCO/1999/207,
2000.

1494

[4] Standard for the Programming Language C++, n4868, 2020.1495

[5] C++ reference, (n.d.).1496

[6] News, Status & Discussion about Standard C++, (n.d.).1497

[7] C++ Stories, (n.d.).1498

[8] R. Grimm, Modernes C++, (n.d.).1499

[9] H. Sutter, Guru of the week archive, (2008).1500

[10] H. Sutter, Guru of the week archive, (2013).1501

[11] S. Meyers, Effective C++, 3rd Edition (Addison-Wesley, 2005).1502

[12] S. Meyers, Effective STL (Addison-Wesley, 2001).1503

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Elements
of Reusable Object-Oriented Software (Addison-Wesley, 1994).

1504

[14] E. Niebler, Range library for C++, (n.d.).1505

[15] H. Sutter, A Pragmatic Look at Exception Specifications, C++ Users Journal
20, (2002).

1506

[16] A. Krzemieński, noexcept — what for?, (2014).1507

[17] FaqCompileTimeWarnings ATLAS wiki page, (n.d.).1508

[18] DoxygenDocumentation ATLAS wiki page, (n.d.).1509

78 Version 2.1

http://www.literateprogramming.com/knuthweb.pdf
https://cds.cern.ch/record/685315
https://github.com/cplusplus/draft/releases/download/n4868/n4868.pdf
https://cppreference.com
https://isocpp.org
https://www.cppstories.com
https://modernescpp.com
http://www.gotw.ca/gotw
https://herbsutter.com/gotw
https://github.com/ericniebler/range-v3
http://www.gotw.ca/publications/mill22.htm
http://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/FaqCompileTimeWarnings
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/DoxygenDocumentation

	Introduction
	Naming
	Naming of files
	Meaningful names
	Required naming conventions:
	Recommended naming conventions

	Coding
	Organizing the code
	Control flow
	Object life cycle
	Initialization of variables and constants
	Constructor initializer lists
	Copying of objects

	Conversions
	The class interface
	Inline functions
	Argument passing and return values
	const correctness
	Overloading and default arguments
	Comparisons

	new and delete
	Static and global objects
	Object-oriented programming
	Notes on the use of library functions.
	Thread friendliness and thread safety
	Formatted output
	Assertions and error conditions
	Error handling
	Parts of C++ to avoid
	Readability and maintainability
	Portability

	Style
	General aspects of style
	Comments

	Changes
	Version 2.1 (Jan 1, 2026)
	Version 2.0 (March 6, 2024)
	Version 0.7 (Sep 18, 2019)
	Version 0.6 (Dec 20, 2017)
	Version 0.5 (Nov 21, 2017)
	Version 0.4 (Nov 16, 2017)
	Version 0.3 (Aug 23, 2017)
	Version 0.2 (Aug 9, 2017)

	References

